CHAPTER III

The weak order and posets of regions

III.1. Partially ordered sets

III.1.1. Definitions. A partially ordered set ("poset") is a pair (P, \leq) where P is a set and \leq a binary relation on P satisfying

- For all $x \in P$: $p \le p$ (reflexivity)
- For all $x, y \in P$: $x \leq y$ and $y \leq x$ imply x = y (antisymmetry)
- For all $x, y, z \in P$: $x \leq y$ and $y \leq z$ imply $x \leq z$ (transitivity).

We often just refer to "P" if the partial order relation is understood. We write

$$P_{\leq x} := \{ y \in P \mid y \leq x \} \qquad P_{\geq x} := \{ y \in P \mid y \geq x \}$$

If $x \leq y$ in P, t The *interval* between x and y is the set

$$[x,y] := P_{\geq x} \cap P_{\leq y}.$$

We say that y covers x if $[x, y] = \{x, y\}$. The Hasse diagram of a poset P is a drawing of the graph with P as set of vertices, and with an edge xy whenever y covers x.

III.1.2. Examples. For $n \in \mathbb{N}_{>0}$ let

- (i) [n]: The set $\{1, 2, ..., n\}$ with the natural order.
- (ii) $B_n := (\mathscr{P}([n]), \subseteq)$, the *boolean poset* of all subsets of $\{1, \ldots, n\}$, ordered by inclusion.

FIGURE 1

III.1.3. Definitions. The poset P is bounded below if it possesses a unique minimal element, i.e., if there is an element $\hat{0} \in P$ with $P = P_{\geq \hat{0}}$. Accordingly, P is bounded below if it possesses a unique maximal element, i.e., if there is an element $\hat{1} \in P$ with $P = P_{\leq \hat{1}}$. P is bounded if it is both bounded below and bounded above.

If P is bounded below, we call *atoms* of P the elements covering $\hat{0}$.

Given posets (P, \leq_P) , (Q, \leq_Q) , a function $f : P \to Q$ is order preserving if, for every $x, y \in P$,

$$x \leq_P y \Rightarrow f(x) \leq_Q f(y).$$

We call f an *isomorphism of posets* if it has an order-preserving inverse (notice: if P is finite, it is enough to show that f is order preserving and bijective).

III.1.4. Definitions. let $x, y \in P$. The meet $x \wedge y$ and the join $x \vee y$, are defined by

$$P_{\leq x \wedge y} = P_{\leq x} \cap P_{\leq y}, \qquad P_{\geq x \vee y} = P_{\geq x} \cap P_{\geq y}.$$

P is called a *meet semilattice* (resp. join semilattice) if $x \wedge y$ (resp. $x \vee y$) exists for all $x, y \in P$. If *P* is both a meet- and a join- semilattice, then *P* is called a *lattice*.

The rank of a poset P, denoted by rk(P), is the length of the longest chain in P. For every element $x \in P$ let $rk(x) := rk[\hat{0}, x]$.

III.1.5. Lemma. Let P be a bounded poset such that for every $x, y \in P$ the join $x \lor y$ exists. Then P is a lattice.

PROOF. We must prove that for all $x, y \in P$ the meet $x \wedge y$ exists. To this end, choose $x, y \in P$ and consider

$$P_{\leq x} \cap P_{\leq y}$$

Since P is bounded, this set is not empty. Since joins exist, this set must have a unique maximal element: this element satisfies the definition of $x \wedge y$.

III.1.6. Lemma. Let P be a bounded poset of finite rank such that, for any $x, y, z \in P$, if both x, y cover z then the join $x \vee y$ exists. Then P is a lattice.

PROOF. By Lemma III.1.5 it is enough to prove that $x \vee y$ exists for every $x, y \in P$. This we prove by induction on $\operatorname{rk}(P)$, the claim being clearly true if $\operatorname{rk}(P) \leq 2$.

Assume then $\operatorname{rk}(P) = k > 2$ and let $x, y \in P$ that do not cover a common element. Let $a_1, a_2 \in P$ be two elements covering $\hat{0}$ such that $a_1 \leq x, a_2 \leq y$. If $a_1 = a_2$, then $x, y \in P_{\geq a_1}$ and by induction $x \lor y$ exists. Otherwise, since both a_1, a_2 cover $\hat{0}$ we know that $a_1 \lor a_2$ exists. Now, $x \lor a_1 \lor a_2$ exists in $[a_1, \hat{1}]$, $y \lor x \lor a_1 \lor a_2$ exists in $[a_2, \hat{1}]$. The fact that $a_1 \leq x$ and $a_2 \leq y$ implies $x \lor y \lor a_1 \lor a_2 = x \lor y$.

III.2. Weak order of Coxeter groups

III.2.1. Definition. Let (W, S) be a Coxeter system and let $u, w \in W$. We say:

- (i) $u \leq_R w$ if there are $s_1 \cdots s_k \in S$ such that
- $w = us_1 \cdots s_k$ and $\ell(us_1 \cdots s_i) = \ell(u) + i$ for all $i = 1, \dots, k$.
- (ii) $u \leq_L w$ if there are $s_1 \cdots s_k \in S$ such that

 $w = s_k s_{k-1} \cdots s_1 u$ and $\ell(s_1 s_{1-1} \cdots s_1 u) = \ell(u) + i$ for all $i = 1, \dots, k$.

It is immediate to verify that these define partial orderings on W. The two posets (W, \leq_R) and (W, \leq_L) are isomorphic through the function

$$W \to W, \quad w \mapsto w^{-1},$$

which is easily checked to be an order preserving bijection.

III.2.2. Remark. For all $u, w \in W$,

(i) $u \leq_R w$ if and only if $\ell(u) + \ell(u^{-1}w) = \ell(w)$.

PROOF. Choose a reduced expression $u = s_1 \cdots s_{\ell(u)}$. • If $u \leq_R w$, by definition there are s'_1, \cdots, s'_l with $w = us'_1 \cdots s'_l$ (so $\ell(u^{-1}w) \leq l$), and $\ell(w) = \ell(u) + l$. Together,

$$\ell(u) + l = \ell(w) \stackrel{II.2.2.(e)}{\leq} \ell(u) + \ell(u^{-1}w) \leq \ell(u) + l$$

implying equality throughout, hence the desired equation.

• Conversely, assume $\ell(u) + \ell(u^{-1}w) = \ell(w)$ and choose a reduced expression $u^{-1}w = s'_1 \cdots s'_{\ell(u^{-1}w)}$. Suppose, by way of contradiction, that for some *i* we have $\ell(us'_1 \cdots s'_i) < \ell(u) + i$. Then we would have

$$\begin{split} \ell(w) &= \ell(us'_1 \cdots s'_{\ell(u^{-1}w)}) \stackrel{II.2.2.(e)}{\leq} \ell(us'_1 \cdots s'_i) + \ell(s'_{i+1} \cdots s'_{\ell(u^{-1}w)}) \\ &< \ell(u) + i + (\ell(u^{-1}w) - i) = \ell(u) + \ell(u^{-1}w), \end{split}$$

reaching the desired contradiction.

 \Box

(ii) $u \leq_R w$ if and only if there are reduced expressions

$$u = s_1 \cdots s_k$$
 and $w = s_1 \cdots s_k s'_1 \cdots s'_l$.

PROOF. Analogous (exercise).

III.2.3. Recall / Definition. Remember from Definition II.2.6. that for all $w \in W$ we have a set

$$T_L(w) := \{t \in T \mid \ell(tw) < \ell(w)\}$$

which, by Corollary II.2.5., equals

$$T_L(w) = \{s_1 \cdots s_i s_{i-1} \cdots s_1 \mid 1 \le i \le k\}$$

where $w = s_1 \cdots s_k$ is a reduced expression for w. By Lemma II.1.2. we also have

$$|T_L(w)| = \ell(w)$$

III.2.4. Proposition. For $u, w \in W$, $u \leq_R w$ if and only if $T_L(u) \subseteq T_L(w)$.

PROOF. Suppose first $u \leq_R w$. Then, by Remark III.2.2 we can find a reduced expression $w = s_1 \cdots s_l$ with $u = s_1 \cdots s_k$ for some $k \leq l$. As recalled in III.2.3, we then have

$$T_L(u) = \{s_1 \cdots s_i s_{i-1} \cdots s_l \mid 1 \le i \le k\}$$
$$\subseteq \{s_1 \cdots s_i s_{i-1} \cdots s_l \mid 1 \le i \le l\} = T_L(w).$$

For the reverse direction, suppose $T_L(u) \subseteq T_L(w)$ and choose a reduced expression $u = s_1 \cdots s_k$. By Remark III.2.2 it is enough to find a reduced expression for w of the form

$$w = s_1 \cdots s_k \underbrace{s'_1 \cdots s'_{l-k}}_{l-k \text{ letters from } S},$$

where $l = \ell(w)$. We will show this by proving inductively

Claim: For all i = 0, ..., k the following statement holds. A(i): there is a reduced expression for w of the form

$$w = s_1 \cdots s_i (l-i)$$
 letters from S

Proof of the claim. The statement is clearly true for i = 0. Suppose that A(i) holds for some i < k and consider A(i+1).

For $j = 1, \ldots, k$ write $t_j := s_1 \cdots s_j s_{j-1} \cdots s_k$. With III.2.3 we know $t_{i+1} \in T_L(u)$, hence

$$t_{i+1} \in T_L(w).$$

With A(i) we can write $w = s_1 \cdots s_i s'_1 \cdots s'_{l-i}$ and, using III.2.3, t_{i+1} must then have the form

$$t_{i+1} = (s_1 \cdots s_i s'_1 \cdots s'_m)(s'_{m-1} \cdots s'_1 s_i \cdots s_1)$$

for some $m \leq l-i$. (In fact, III.2.3 allows also for $t_{i+1} = s_1 \cdots s_j s_{j-1} \cdots s_1 = t_j$ for some j < i+1, but we can exclude this possibility because Lemma II.1.2. implies $t_j \neq t_{i+1}$ for all $j \neq i+1$). We can rewrite w as

$$w = t_{i+1}(t_{i+1}w) \stackrel{II.2.5.(c)}{=} t_{i+1}(s_1 \cdots s_i s'_1 \cdots s'_{m-1} \widehat{s'_m} s'_{m+1} \cdots s'_{l-i})$$

= $(s_1 \cdots s_{i+1} s_i \cdots s_1) s_1 \cdots s_i s'_1 \cdots s'_{m-1} \widehat{s'_m} s'_{m+1} \cdots s'_{l-i}$
= $s_1 \cdots s_{i+1} \underbrace{s'_1 \cdots \widehat{s'_m} \cdots s'_{l-i}}_{l-(i+1) \text{ letters}}$

as required.

III.3. The poset of regions of an arrangement of hyperplanes in \mathbb{R}^d

III.3.1. Definitions. Let

$$\mathcal{A} := \{H_1, \dots, H_n\}$$

denote an arrangement of hyperplanes in \mathbb{R}^d , i.e., there are vectors $a_1, \ldots, a_n \in \mathbb{R}^d$ and real numbers $c_1, \ldots, c_n \in \mathbb{R}$ such that

(1)
$$H_i = \{ x \in \mathbb{R}^d \mid \langle x, a_i \rangle = c_i \}.$$

The arrangement \mathcal{A} is called *central* if all $c_i = 0$ - this means, all hyperplanes pass through the origin of \mathbb{R}^d .

Once the a_i are chosen, for each i we can also talk about

$$H_i^+ := \{ x \in \mathbb{R}^d \mid \langle x, a_i \rangle > c_i \}, \quad H_i^+ := \{ x \in \mathbb{R}^d \mid \langle x, a_i \rangle < c_i \}.$$

A moment's thought reveals that the complement of \mathcal{A} ,

$$M(\mathcal{A}) := \mathbb{R}^d \setminus \bigcup_{i=1}^n H_i,$$

is a disjoint union of nonempty open cones of the form

$$\bigcap_{i=1}^{n} H_{i}^{\epsilon_{i}} \quad \text{for some } \epsilon \in \{+,-\}^{n}.$$

These open cones are the *chambers*, or *regions* of the arrangement. The cones themselves do not depend on the choice of the a_i , thus we denote by

$$\mathcal{R}(\mathcal{A})$$

the set of chambers of \mathcal{A} .

The separation set of $C_1, C_2 \in \mathcal{R}(\mathcal{A})$ is

$$S(C_1, C_2) := \{ H_i \mid C_1 \subset H_i^{\epsilon}, \ C_2 \subset H_i^{-\epsilon} \text{ for some } \epsilon \in \{+, -\} \}$$
$$= \{ H_i \mid \text{ given } p_1 \in C_1, p_2 \in C_2, \text{ the segment } \overline{p_1 p_2} \text{ meets } H_i \}.$$

For every $B \in \mathcal{R}(\mathcal{A})$ define a relation \leq_B on $\mathcal{R}(\mathcal{A})$ by

 $C_1 \preceq_B C_2$ if and only if $S(B, C_1) \subseteq S(B, C_2)$.

It is easy to see that this relation is a partial order. We will write $[C_1, C_2]_B$ for the interval determined by \leq_B .

The poset of regions of \mathcal{A} based at B is

 $\mathcal{R}(\mathcal{A}, B)$: $\mathcal{R}(\mathcal{A})$ partially ordered by \preceq_B .

FIGURE 2. An arrangement of hyperplanes (lines) in \mathbb{R}^2 and (the Hasse diagram of) its poset of regions based at the shaded region.

FIGURE 3. A central arrangement and (the Hasse diagram of) its poset of regions.

III.3.2. Remark. $S(B,C) = \{H_i \mid C \subseteq H_i^-\}.$

(i) $C_1 \preceq_B C_2$ is equivalent to $S(B, C_2) = S(B, C_1) \uplus S(C_1, C_2)$.

PROOF. The right-to-left implication is trivial. For the other direction notice that there is no loss of generality in choosing a_i such that $B \subseteq H_i^+$ for all *i*. Then, $S(B, C_2) = \{H_i \mid C_2 \subseteq H_i^-\}$. Now write

$$S(B, C_2) = \{H_i \in S(B, C_2) \mid C_1 \subseteq H_i^-\} \uplus \{H_i \in S(B, C_2) \mid C_1 \subseteq H_i^+\}$$

= $S(B, C_1) \uplus \{H_i \in \mathcal{A} \mid C_2 \subseteq H_i^-, C_1 \subseteq H_i^+\}$
= $S(B, C_1) \uplus S(C_1, C_2).$

(ii) The identity map induces an isomorphism $[C_1, C_2]_B \simeq [C_1, C_2]_{C_1}$.

PROOF. Let $R_1, R_2 \in [C_1, C_2]_B$. It is enough to prove that

$$R_1 \preceq_B R_2 \Leftrightarrow R_1 \preceq_{C_1} R_2.$$

With (i) we write

$$R_1 \preceq_B R_2 \Leftrightarrow S(B, R_2) = S(B, R_1) \uplus S(R_1, R_2)$$
$$\stackrel{C_1 \preceq_B R_1}{=} S(B, C_1) \uplus S(C_1, R_1) \uplus S(R_1, R_2)$$

Since $C_1 \preceq_B R_2$ implies $S(B, R_2) = S(B, C_1) \uplus S(C_1, R_2)$, the above is equivalent to

B

$$S(C_1,R_2)=S(C_1,R_1) \uplus S(R_1,R_2)$$
 which, by (i), means $R_1 \preceq_{C_1} R_2.$ \Box

III.3.3. Proposition. Clearly $\mathcal{R}(\mathcal{A}, B)$ always has a unique minimal element, namely *B*. If \mathcal{A} is central, $\mathcal{R}(\mathcal{A}, B)$ is bounded for every *B*.

PROOF. Fix $B \in \mathcal{R}(\mathcal{A})$. If \mathcal{A} is central, $-B \in \mathcal{R}(\mathcal{A})$ and clearly $S(B, -B) = \mathcal{A}$. Hence, $C \preceq_B -B$ for all $C \in \mathcal{R}(\mathcal{A})$.

III.3.4. Definition. Let $B \in \mathcal{R}(\mathcal{A})$. The set of *walls* of *B* is

$$\mathcal{W}(B) := \{ H \in \mathcal{A} \mid \dim H \cap \overline{B} = d - 1 \}.$$

The set of *faces* of B is

$$\mathscr{F}(B) := \{ \overline{B} \cap X \mid X = \bigcap_{H \in A} H \text{ for some } A \subseteq \mathcal{W}(B) \},\$$

it is the set of faces of the closed polytope \overline{B} . We write $\mathscr{F}^{(1)}(B)$ for the set of faces of codimension 1. Given any $F \in \mathscr{F}(B)$ let

$$\mathcal{H}(F) := \{ H \in \mathcal{A} \mid F \subseteq H \}, \quad \mathcal{W}(B, F) = \mathcal{H}(F) \cap \mathcal{W}(B).$$

Call a chamber $B \in \mathcal{R}(\mathcal{A})$ simplicial if the hyperplanes in $\mathcal{W}(B)$ have linearly independent normals. This is equivalent to saying that \overline{B} is a simplicial cone.

FIGURE 4. The set $\mathscr{F}(B_2)$ (partially ordered by inclusion) and the set $\mathcal{W}(B_2, F)$ for the chamber B_2 and the face F of the arrangement of Figure 3, where the set $\mathcal{H}(F)$ is highlighted in yellow.

III.3.5. Lemma. Let $B \in \mathcal{R}(\mathcal{A})$.

(i) For every $F \in \mathscr{F}(B)$ there is a unique chamber $R(F) \in \mathcal{R}(\mathcal{A})$ such that

$$S(B, R(F)) = \mathcal{H}(F).$$

Moreover, $S(B,C) \supseteq W(B,F)$ implies $S(B,R(F)) = \mathcal{H}(F)$, and hence $C \succeq_B R(F)$.

- (ii) The set of atoms of $\mathcal{R}(\mathcal{A}, B)$ is $\{R(F) \mid F \in \mathscr{F}^{(1)}(B)\}$
- (iii) If B is simplicial, any set $R(F_1), \ldots, R(F_k)$ of atoms of $\mathcal{R}(\mathcal{A}, B)$ has the join

$$R(F_1) \lor \ldots \lor R(F_k) = R(F_1 \cap \ldots \cap F_k).$$

Proof.

(i) Let $p \in \operatorname{relint}(F)$.

First, we claim: there is $\epsilon > 0$ such that $B_{\epsilon}(p) \cap H = \emptyset$ for every hyperplane $H \notin \mathcal{H}(F)$.

[Proof. p is in the complement, hence in a unique chamber C_p of the arrangement $\mathcal{A} \setminus \mathcal{H}(F)$. Since C_p is open, there is $\epsilon > 0$ with $B_{\epsilon}(p) \subseteq C_p$. This satisfies the claim.]

Choose then $x \in B \cap B_{\epsilon}(p)$ (which is nonempty because $p \in \overline{C}$) and consider $q := p - x \in B_{\epsilon}(p)$. Then q is in the complement of \mathcal{A} . [Proof:

• for $H \in \mathcal{H}(F)$, the line \overline{px} does not lie in H, hence only meets H in x.

• For $H \in \mathcal{A} \setminus \mathcal{H}(F), q \in B_{\epsilon}(p)$ implies $q \notin H$.]

Thus q is contained in a unique chamber of \mathcal{A} , that we call R(F), for which

Every other $C' \in \mathcal{R}(\mathcal{A})$ with $S(B, C') \supseteq \mathcal{H}(F)$ must lie in the chamber of $\mathcal{H}(F)$ containing R(F), and for any $y \in C'$ the line \overline{yp} meets a nonempty subset of $\mathcal{A} \setminus \mathcal{H}(F)$ and, continuing it by $< \epsilon$ past p, will further meet only hyperplanes in $\mathcal{H}(F)$. Hence we have a segment from B to C' that meets more than the hyperplanes in $\mathcal{H}(F)$. This proves uniqueness.

Looking closer at the situation, we see that in the central arrangement $\mathcal{H}(F)-p$, the set of walls of the chamber $-(B-p) \ni q-p$ is, by symmetry, again $\mathcal{W}(B,F)-p$. Therefore, in $\mathcal{H}(F)$ requiring $S(B,C) \supseteq \mathcal{W}(B,F)$ implies $S(B,C) \supseteq \mathcal{H}(F)$.

- (ii) Clearly, for every $F \in \mathscr{F}^{(1)}(B)$, R(F) is an atom. Conversely, if C is an atom of $\mathcal{R}(\mathcal{A}, B)$ then |S(B, C)| = 1. This means that for $x \in B$, $y \in C$, the segment \overline{xy} meets only H, and does so in a point $p \in H \cap \overline{C}$ which is in (thus: possesses an ϵ -ball inside) the complement of $\mathcal{A} \setminus \{H\}$. Therefore $p \in \operatorname{relint}(F)$ for $F = \overline{B} \cap H \in \mathscr{F}^{(1)}(B)$, and by the uniqueness of (i), C = R(F).
- (iii) If B is simplicial, then $F := F_1 \cap \ldots \cap F_k$ is a codimension k face with $\mathcal{W}(B,F) = \{H_1,\ldots,H_k\}$, where $F_i = \overline{C} \cap H_i$.

We know from (i) that $R(F) \succeq_B R(F_i)$ for all i = 1, ..., k.

On the other hand, $C \succeq_B R(F_i)$ for all $i = 1, \ldots, k$ implies $S(B, C) \supseteq W(B, F)$ and thus by (i) again $C \succeq_B R(F)$.

8

III.3.6. Theorem. If \mathcal{A} is a simplicial arrangement, then the poset $\mathcal{R}(\mathcal{A}, B)$ is a lattice for all choices of B.

PROOF. Fix an arbitrary $B \in \mathcal{R}(\mathcal{A})$. We will use Lemma III.1.6 in order to show that $\mathcal{R}(\mathcal{A}, B)$ is a lattice.

Let $C_1, C_2, C \in \mathcal{R}(\mathcal{A}, B)$ and suppose that both C_1 and C_2 cover some C.

Since C is simplicial, Lemma III.3.5.(iii) shows that the join $C_1 \vee_C C_2$ exists in $\mathcal{R}(\mathcal{A}, C)$. It is, by definition, containd in $[C, -B]_C$. Via the isomorphism of Remark III.3.2.(ii) between the intervals $[C, -B]_B$ and $[C, -B]_C$, we conclude that $C_1 \vee_C C_2 = C_1 \vee_B C_2$, so the join exists in $\mathcal{R}(\mathcal{A}, B)$ as well.

III.3.7. Remark. There are examples of non-simplicial arrangements \mathcal{A} with some $B \in \mathcal{R}(\mathcal{A})$ for which $\mathcal{R}(\mathcal{A}, B)$ is a lattice. However, the following characterization of simplicial arrangements holds.

III.3.8. Theorem. A central arrangement \mathcal{A} is simplicial if and only if $\mathcal{R}(\mathcal{A}, B)$ is a lattice for every choice of B.

PROOF. Theorem III.3.6 proves one direction. The interested reader can find a proof of the other direction as [3, Theorem 3.1].

III.4. The weak order of finite Coxeter groups is a lattice

Let (W, S) be a finite Coxeter group. Recall from Chapter I the set of roots

 $\Phi_W = \{ \rho_w(\alpha_s) \mid w \in W, s \in S \} \subseteq V \simeq \mathbb{R}^d$

Recall the associated *Coxeter arrangement* in V^* :

$$\mathcal{A} = \{\rho_w^*(H_s) \mid s \in S\}$$

To every reflection $t = usu^{-1} \in T$ we can associate a hyperplane

$$H_t = \{ p \in V^* \mid \langle p, \rho_u(\alpha_s) \rangle = 0 \}.$$

III.4.1. Lemma. $\mathcal{A} = \{H_t \mid t \in T\}.$

PROOF. From the definition we see

$$H_t = \{ p \in V^* \mid \langle \rho_{u^{-1}}^*(p), \alpha_s \rangle = 0 \} = \{ \rho_u^*(q) \mid \langle q, \alpha_s \rangle = 0 \} = \rho_u^*(H_s)$$

and with an analogous computation $\rho_w^*(H_s) = H_{wsw^{-1}}$, thus the claim holds.

III.4.2. Proposition. Let $w \in W$. Then, for all $t \in T$: $H_t \in S(C, \rho_w^*(C))$ if and only if $t \in T_L(w)$.

PROOF. " \Leftarrow " By Definition III.2.3, $t \in T_L(w)$ means $\ell(tw) < \ell(w)$. By Corollary II.2.5., this in turn means that, if $w = s_1 \cdots s_k$ is a reduced expression, there is an *i* with

$$t = \underbrace{s_1 \cdots s_{i-1}}_{=:u} s_i s_{i-1} \cdots s_1.$$

Since $u^{-1} = s_{i-1} \cdots s_1$, we immediately have $\ell(s_i u^{-1}) > \ell(u^{-1})$. By Lemma I.4.4., equivalently $\rho_{u^{-1}}^*(C) \subseteq H_{s_i}^+$ or, otherwise said, for all $p \in C$

$$\langle p, \rho_u(\alpha_{s_i}) \rangle = \langle \rho_{u^{-1}}^*(p), \alpha_{s_i} \rangle > 0.$$

Let then $v := s_i \cdots s_k$, so that w = uv.

Again, by Lemma I.4.4. $\ell(s_i v) < \ell(v)$ is equivalent to

$$\rho_v^*(C) \subseteq H_{s_i}^-,$$

hence

$$\rho_w^*(C) = \rho_u^* \rho_v^*(C) \subseteq \rho_u^*(H_{s_i}^-) = \{\rho_u^*(q) \mid \langle q, \alpha_{s_i} \rangle < 0\} \\ = \{\rho_u^*(q) \in V^* \mid \langle \rho_u^*(q), \rho_u(\alpha_{s_i}) \rangle < 0\} \\ = \{p \in V^* \mid \langle p, \rho_u(\alpha_{s_i}) \rangle < 0\}.$$

" \Rightarrow " For the other implication we proceed by contraposition: suppose then $t \notin T_L(w)$. This means $\ell(tw) > \ell(w)$. Applying the argument carried out above to t and tw we see that

(2)
$$H_t \in S(C, \rho_{tw}^*(C)).$$

Now, for every $p \in C$, writing $t = usu^{-1}$ we have

$$\langle \rho_{tw}^*(p), \rho_u(\alpha_s) \rangle = \langle \rho_w^*(p), \rho_{tu}(\alpha_s) \rangle = \langle \rho_w^*(p), \rho_{us}(\alpha_s) \rangle$$
$$= \langle \rho_w^*(p), \rho_u(-\alpha_s) \rangle = -\langle \rho_w^*(p), \rho_u(\alpha_s) \rangle$$

and in particular

Equations (2) and (3) together imply

$$H_t \notin S(C, \rho_w^*(C))$$

as required.

III.4.3. Theorem. The function

$$\phi: W \to \mathcal{R}(\mathcal{A}_W), \quad w \mapsto \rho_w^*(C)$$

defines a poset isomorphism

$$(W, \leq_R) \simeq \mathcal{R}(\mathcal{A}, C)$$

PROOF. The function ϕ is a bijection by Chapter I, and is order preserving by Theorem 4.2 and Proposition 2.4

III.4.4. Corollary. The Bruhat order of a finite Coxeter system is a lattice.

PROOF. By Chapter I the arrangement \mathcal{A}_W is simplicial. By Theorem 3.10 then, $\mathcal{R}(\mathcal{A}_W, C)$ is a lattice, thus – via the isomorphism of Theorem 4.3 – so is (W, \leq_R) .

III.5. Sources

Section III.1 includes material from [4] and [3]. Section III.2 is a selection from [1, Chapter 3]. Section III.3 includes material from [2] and [3]. Figure 2 is taken from [2], and Figure 3 is modified from [3].

10

Bibliography

- [1] Anders Björner, Francesco Brenti. Combinatorics of Coxeter groups. Springer GTM.
- [2] Paul Edelman. A partial order on the regions of R^d dissected by hyperplanes. Transactions of the American Mathematical Society, Vol. 283, n. 2, 1984, 617–631.
- [3] Anders Björner, Paul Edelman, Günter Ziegler. Arrangements with a lattice of regions. Discrete and Computational Geometry, Vol. 5, 1990, p. 263–288.
- [4] Ricard Stanley. Enumerative combinatorics, Vol. 1. Oxford University Press.