
CHAPTER III

The weak order and posets of regions

III.1. Partially ordered sets

III.1.1. Definitions. A partially ordered set (”poset”) is a pair (P,≤) where
P is a set and ≤ a binary relation on P satisfying

• For all x ∈ P : p ≤ p (reflexivity)
• For all x, y ∈ P : x ≤ y and y ≤ x imply x = y (antisymmetry)
• For all x, y, z ∈ P : x ≤ y and y ≤ z imply x ≤ z (transitivity).

We often just refer to “P” if the partial order relationis understood.
We write

P≤x := {y ∈ P | y ≤ x} P≥x := {y ∈ P | y ≥ x}

If x ≤ y in P , t The interval between x and y is the set

[x, y] := P≥x ∩ P≤y.

We say that y covers x if [x, y] = {x, y}. The Hasse diagram of a poset P is a
drawing of the graph with P as set of vertices, and with an edge xy whenever y
covers x.

III.1.2. Examples. For n ∈ N>0 let

(i) [n]: The set {1, 2, . . . , n} with the natural order.
(ii) Bn := (P([n]),⊆), the boolean poset of all subsets of {1, . . . , n}, ordered

by inclusion.

Figure 1
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III.1.3. Definitions. The poset P is bounded below if it possesses a unique
minimal element, i.e., if there is an element 0̂ ∈ P with P = P≥0̂. Accordingly, P is
bounded below if it possesses a unique maximal element, i.e., if there is an element
1̂ ∈ P with P = P≤1̂. P is bounded if it is both bounded below and bounded above.

If P is bounded below, we call atoms of P the elements covering 0̂.
Given posets (P,≤P ), (Q,≤Q), a function f : P → Q is order preserving if, for

every x, y ∈ P ,

x ≤P y ⇒ f(x) ≤Q f(y).

We call f an isomorphism of posets if it has an order-preserving inverse (notice: if
P is finite, it is enough to show that f is order preserving and bijective).

III.1.4. Definitions. let x, y ∈ P . The meet x ∧ y and the join x ∨ y, are
defined by

P≤x∧y = P≤x ∩ P≤y, P≥x∨y = P≥x ∩ P≥y.
P is called a meet semilattice (resp. join semilattice) if x∧ y (resp. x∨ y) exists

for all x, y ∈ P . If P is both a meet- and a join- semilattice, then P is called a
lattice.

The rank of a poset P , denoted by rk(P ), is the length of the longest chain in

P . For every element x ∈ P let rk(x) := rk[0̂, x].

III.1.5. Lemma. Let P be a bounded poset such that for every x, y ∈ P the
join x ∨ y exists. Then P is a lattice.

Proof. We must prove that for all x, y ∈ P the meet x∧y exists. To this end,
choose x, y ∈ P and consider

P≤x ∩ P≤y.
Since P is bounded, this set is not empty. Since joins exist, this set must have a
unique maximal element: this element satisfies the definition of x ∧ y. �

III.1.6. Lemma. Let P be a bounded poset of finite rank such that, for any
x, y, z ∈ P , if both x, y cover z then the join x ∨ y exists. Then P is a lattice.

Proof. By Lemma III.1.5 it is
enough to prove that x ∨ y exists for
every x, y ∈ P . This we prove by induc-
tion on rk(P ), the claim being clearly
true if rk(P ) ≤ 2.
Assume then rk(P ) = k > 2 and let
x, y ∈ P that do not cover a common el-
ement. Let a1, a2 ∈ P be two elements
covering 0̂ such that a1 ≤ x, a2 ≤ y. If
a1 = a2, then x, y ∈ P≥a1 and by in-
duction x ∨ y exists. Otherwise, simce
both a1, a2 cover 0̂ we know that a1∨a2
exists. Now, x∨a1∨a2 exists in [a1, 1̂],

y ∨ x ∨ a1 ∨ a2 exists in [a2, 1̂]. The
fact that a1 ≤ x and a2 ≤ y implies
x ∨ y ∨ a1 ∨ a2 = x ∨ y. �
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III.2. Weak order of Coxeter groups

III.2.1. Definition. Let (W,S) be a Coxeter system and let u,w ∈ W . We
say:

(i) u ≤R w if there are s1 · · · sk ∈ S such that
w = us1 · · · sk and `(us1 · · · si) = `(u) + i for all i = 1, . . . , k.

(ii) u ≤L w if there are s1 · · · sk ∈ S such that
w = sksk−1 · · · s1u and `(s1s1−1 · · · s1u) = `(u) + i for all i = 1, . . . , k.

It is immediate to verify that these define partial orderings on W . The two
posets (W,≤R) and (W,≤L) are isomorphic through the function

W →W, w 7→ w−1,

which is easily checked to be an order preserving bijection.

III.2.2. Remark. For all u,w ∈W ,

(i) u ≤R w if and only if `(u) + `(u−1w) = `(w).

Proof. Choose a reduced expression u = s1 · · · s`(u).
• If u ≤R w, by definition there are s′1, · · · , s′l with w = us′1 · · · s′l (so
`(u−1w) ≤ l), and `(w) = `(u) + l. Together,

`(u) + l = `(w)
II.2.2.(e)

≤ `(u) + `(u−1w) ≤ `(u) + l

implying equality throughout, hence the desired equation.
• Conversely, assume `(u)+ `(u−1w) = `(w) and choose a reduced expres-
sion u−1w = s′1 · · · s′`(u−1w). Suppose, by way of contradiction, that for

some i we have `(us′1 · · · s′i) < `(u) + i. Then we would have

`(w) = `(us′1 · · · s′`(u−1w))
II.2.2.(e)

≤ `(us′1 · · · s′i) + `(s′i+1 · · · s′`(u−1w))

< `(u) + i+ (`(u−1w)− i) = `(u) + `(u−1w),

reaching the desired contradiction. �

(ii) u ≤R w if and only if there are reduced expressions

u = s1 · · · sk and w = s1 · · · sks′1 · · · s′l.

Proof. Analogous (exercise). �

III.2.3. Recall / Definition. Remember from Definition II.2.6. that for all
w ∈W we have a set

TL(w) := {t ∈ T | `(tw) < `(w)}

which, by Corollary II.2.5., equals

TL(w) = {s1 · · · sisi−1 · · · s1 | 1 ≤ i ≤ k}

where w = s1 · · · sk is a reduced expression for w. By Lemma II.1.2. we also have

|TL(w)| = `(w).
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III.2.4. Proposition. For u,w ∈W , u ≤R w if and only if TL(u) ⊆ TL(w).

Proof. Suppose first u ≤R w. Then, by Remark III.2.2 we can find a reduced
expression w = s1 · · · sl with u = s1 · · · sk for some k ≤ l. As recalled in III.2.3, we
then have

TL(u) = {s1 · · · sisi−1 · · · sl | 1 ≤ i ≤ k}
⊆ {s1 · · · sisi−1 · · · sl | 1 ≤ i ≤ l} = TL(w).

For the reverse direction, suppose TL(u) ⊆ TL(w) and choose a reduced expres-
sion u = s1 · · · sk. By Remark III.2.2 it is enough to find a reduced expression for
w of the form

w = s1 · · · sk s′1 · · · · · · s′l−k︸ ︷︷ ︸
l−k letters from S

,

where l = `(w). We will show this by proving inductively

Claim: For all i = 0, . . . , k the following statement holds.
A(i): there is a reduced expression for w of the form

w = s1 · · · si (l − i) letters from S

Proof of the claim. The statement is clearly true for i = 0. Suppose that
A(i) holds for some i < k and consider A(i+ 1).
For j = 1, . . . , k write tj := s1 · · · sjsj−1 · · · sk. With III.2.3 we know
ti+1 ∈ TL(u), hence

ti+1 ∈ TL(w).

With A(i) we can write w = s1 · · · sis′1 · · · s′l−i and, using III.2.3, ti+1 must
then have the form

ti+1 = (s1 · · · sis′1 · · · s′m)(s′m−1 · · · s′1si · · · s1)

for somem ≤ l−i. (In fact, III.2.3 allows also for ti+1 = s1 · · · sjsj−1 · · · s1 =
tj for some j < i+ 1, but we can exclude this possibility because Lemma
II.1.2. implies tj 6= ti+1 for all j 6= i+ 1). We can rewrite w as

w = ti+1(ti+1w)
II.2.5.(c)

= ti+1(s1 · · · sis′1 · · · s′m−1ŝ′ms′m+1 · · · s′l−i)

= (s1 · · · si+1si · · · s1)s1 · · · sis′1 · · · s′m−1ŝ′ms′m+1 · · · s′l−i
= s1 · · · si+1 s

′
1 · · · ŝ′m · · · s′l−i︸ ︷︷ ︸
l−(i+1) letters

as required.

�

III.3. The poset of regions of an arrangement of hyperplanes in Rd

III.3.1. Definitions. Let

A := {H1, . . . ,Hn}

denote an arrangement of hyperplanes in Rd, i.e., there are vectors a1, . . . , an ∈ Rd
and real numbers c1, . . . , cn ∈ R such that

(1) Hi = {x ∈ Rd | 〈x, ai〉 = ci}.
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The arrangement A is called central if all ci = 0 - this means, all hyperplanes
pass through the origin of Rd.

Once the ai are chosen, for each i we can also talk about

H+
i := {x ∈ Rd | 〈x, ai〉 > ci}, H+

i := {x ∈ Rd | 〈x, ai〉 < ci}.
A moment’s thought reveals that the complement of A,

M(A) := Rd \
n⋃
i=1

Hi,

is a disjoint union of nonempty open cones of the form
n⋂
i=1

Hεi
i for some ε ∈ {+,−}n.

These open cones are the chambers, or regions of the arrangement. The cones
themselves do not depend on the choice of the ai, thus we denote by

R(A)

the set of chambers of A.
The separation set of C1, C2 ∈ R(A) is

S(C1, C2) := {Hi | C1 ⊂ Hε
i , C2 ⊂ H−εi for some ε ∈ {+,−}}

= {Hi | given p1 ∈ C1, p2 ∈ C2, the segment p1p2 meets Hi}.
For every B ∈ R(A) define a relation �B on R(A) by

C1 �B C2 if and only if S(B,C1) ⊆ S(B,C2).

It is easy to see that this relation is a partial order. We will write [C1, C2]B for the
interval determined by �B .

The poset of regions of A based at B is

R(A, B) : R(A) partially ordered by �B .
REGIONS OF R" DISSECTED BY HYPERPLANES 619
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Unless noted otherwise the sets 39(5), S(5) and g'(5) will be denoted by 39, g
and g', respectively.

Proposition \.l. P(%, B) is ranked by xk(R) =\S(R)\.

Proof. This is geometrically clear based on the observation that if S(RX) C S(R2)
then there exists a hyperplane 77 G DC such that H E S(R2) - S(RX) and H E
39(5.,). Hence there exists a region 5 such that S(R) = S(RX) U {H} and so
5, < 5 < 52. We leave the details to the reader.    □

Our next goal is to explicitly compute the Mobius function p for P(%, B). For the
definition and the significance of the Mobius function see [R or A]. Since P(%, 5) is
not a lattice in general, the standard techniques for the computation of /x do not
apply. We begin by identifying certain important regions.

Lemma 1.2. // F E g and F ¥= 0, then there exists a unique region R(F) E St such
that S(R(F)) = X(F).License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use
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Figure 2. An arrangement of hyperplanes (lines) in R2 and (the
Hasse diagram of) its poset of regions based at the shaded region.
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Figure 3. A central arrangement and (the Hasse diagram of) its
poset of regions.

III.3.2. Remark. S(B,C) = {Hi | C ⊆ H−i }.
(i) C1 �B C2 is equivalent to S(B,C2) = S(B,C1) ] S(C1, C2).

Proof. The right-to-left implication is trivial. For the other direc-
tion notice that there is no loss of generality in choosing ai such that
B ⊆ H+

i for all i. Then, S(B,C2) = {Hi | C2 ⊆ H−i }. Now write

S(B,C2) = {Hi ∈ S(B,C2) | C1 ⊆ H−i } ] {Hi ∈ S(B,C2) | C1 ⊆ H+
i }

= S(B,C1) ] {Hi ∈ A | C2 ⊆ H−i , C1 ⊆ H+
i }

= S(B,C1) ] S(C1, C2).

�

(ii) The identity map induces an isomorphism [C1, C2]B ' [C1, C2]C1 .

Proof. Let R1, R2 ∈ [C1, C2]B .
It is enough to prove that

R1 �B R2 ⇔ R1 �C1
R2.

With (i) we write

R1 �B R2 ⇔ S(B,R2) =S(B,R1) ] S(R1, R2)

C1�BR1
= S(B,C1) ] S(C1, R1) ] S(R1, R2)

Since C1 �B R2 implies S(B,R2) = S(B,C1) ] S(C1, R2), the above is
equivalent to

S(C1, R2) = S(C1, R1) ] S(R1, R2)

which, by (i), means R1 �C1
R2. �
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III.3.3. Proposition. ClearlyR(A, B) always has a unique minimal element,
namely B. If A is central, R(A, B) is bounded for every B.

Proof. Fix B ∈ R(A). IfA is central, −B ∈ R(A) and clearly S(B,−B) = A.
Hence, C �B −B for all C ∈ R(A). �

III.3.4. Definition. Let B ∈ R(A). The set of walls of B is

W(B) := {H ∈ A | dimH ∩B = d− 1}.

The set of faces of B is

F (B) := {B ∩X | X =
⋂
H∈A

H for some A ⊆ W(B)},

it is the set of faces of the closed polytope B. We write F (1)(B) for the set of faces
of codimension 1. Given any F ∈ F (B) let

H(F ) := {H ∈ A | F ⊆ H}, W(B,F ) = H(F ) ∩W(B).

Call a chamber B ∈ R(A) simplicial if the hyperplanes in W(B) have linearly
independend normals. This is equivalent to saying that B is a simplicial cone.

Figure 4. The set F (B2) (partially ordered by inclusion) and the
set W(B2, F ) for the chamber B2 and the face F of the arrange-
ment of Figure 3, where the set H(F ) is highlighted in yellow.

III.3.5. Lemma. Let B ∈ R(A).

(i) For every F ∈ F (B) there is a unique chamber R(F ) ∈ R(A) such that

S(B,R(F )) = H(F ).

Moreover, S(B,C) ⊇ W(B,F ) implies S(B,R(F )) = H(F ), and hence
C �B R(F ).

(ii) The set of atoms of R(A, B) is {R(F ) | F ∈ F (1)(B)}
(iii) If B is simplicial, any set R(F1), . . . , R(Fk) of atoms of R(A, B) has the

join

R(F1) ∨ . . . ∨R(Fk) = R(F1 ∩ . . . ∩ Fk).
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Proof.

(i) Let p ∈ relint(F ).
First, we claim: there is ε > 0 such that Bε(p)∩H = ∅ for every hyperplane
H 6∈ H(F ).
[Proof. p is in the complement, hence in a unique chamber Cp of the
arrangement A\H(F ). Since Cp is open, there is ε > 0 with Bε(p) ⊆ Cp.
This satisfies the claim.]
Choose then x ∈ B ∩ Bε(p) (which is nonempty because p ∈ C) and
consider q := p− x ∈ Bε(p). Then q is in the complement of A.
[Proof:
• for H ∈ H(F ), the line px does not lie in H, hence only meets H in x.
• For H ∈ A \ H(F ), q ∈ Bε(p) implies q 6∈ H.]
Thus q is contained in a unique chamber of A, that we call R(F ), for
which

S(B,R(F )) = H(F ).

Every other C ′ ∈ R(A) with S(B,C ′) ⊇ H(F ) must lie in the chamber
ofH(F ) containing R(F ), and for any y ∈ C ′ the line yp meets a nonempty
subset of A\H(F ) and, continuing it by < ε past p, will further meet only
hyperplanes in H(F ). Hence we have a segment from B to C ′ that meets
more than the hyperplanes in H(F ). This proves uniqueness.

Looking closer at the situation, we see that in the central arrangement
H(F )−p, the set of walls of the chamber −(B−p) 3 q−p is, by symmetry,
again W(B,F ) − p. Therefore, in H(F ) requiring S(B,C) ⊇ W(B,F )
implies S(B,C) ⊇ H(F ).

(ii) Clearly, for every F ∈ F (1)(B), R(F ) is an atom. Conversely, if C is an
atom of R(A, B) then |S(B,C)| = 1. This means that for x ∈ B, y ∈ C,
the segment xy meets only H, and does so in a point p ∈ H ∩C which is
in (thus: possesses an ε-ball inside) the complement of A\{H}. Therefore
p ∈ relint(F ) for F = B ∩ H ∈ F (1)(B), and by the uniqueness of (i),
C = R(F ).

(iii) If B is simplicial, then F := F1 ∩ . . . ∩ Fk is a codimension k face with
W(B,F ) = {H1, . . . ,Hk}, where Fi = C ∩Hi.
We know from (i) that R(F ) �B R(Fi) for all i = 1, . . . , k.

On the other hand, C �B R(Fi) for all i = 1, . . . , k implies S(B,C) ⊇
W(B,F ) and thus by (i) again C �B R(F ).
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�

III.3.6. Theorem. If A is a simplicial arrangement, then the poset R(A, B)
is a lattice for all choices of B.

Proof. Fix an arbitrary B ∈ R(A). We will use Lemma III.1.6 in order to
show that R(A, B) is a lattice.

Let C1, C2, C ∈ R(A, B) and suppose that both C1 and C2 cover some C.
Since C is simplicial, Lemma III.3.5.(iii) shows that the join C1 ∨C C2 exists

in R(A, C). It is, by definition, containd in [C,−B]C . Via the isomorphism of
Remark III.3.2.(ii) between the intervals [C,−B]B and [C,−B]C , we conclude that
C1 ∨C C2 = C1 ∨B C2, so the join exists in R(A, B) as well. �

III.3.7. Remark. There are examples of non-simplicial arrangements A with
some B ∈ R(A) for which R(A, B) is a lattice. However, the following characteri-
zation of simplicial arrangements holds.

III.3.8. Theorem. A central arrangementA is simplicial if and only ifR(A, B)
is a lattice for every choice of B.

Proof. Theorem III.3.6 proves one direction. The interested reader can find
a proof of the other direction as [3, Theorem 3.1]. �

III.4. The weak order of finite Coxeter groups is a lattice

Let (W,S) be a finite Coxeter group. Recall from Chapter I the set of roots

ΦW = {ρw(αs) | w ∈W, s ∈ S} ⊆ V ' Rd

Recall the associated Coxeter arrangement in V ∗:

A = {ρ∗w(Hs) | s ∈ S}
To every reflection t = usu−1 ∈ T we can associate a hyperplane

Ht = {p ∈ V ∗ | 〈p, ρu(αs)〉 = 0}.

III.4.1. Lemma. A = {Ht | t ∈ T}.

Proof. From the definition we see

Ht = {p ∈ V ∗ | 〈ρ∗u−1(p), αs〉 = 0} = {ρ∗u(q) | 〈q, αs〉 = 0} = ρ∗u(Hs)

and with an analogous computation ρ∗w(Hs) = Hwsw−1 , thus the claim holds.
�

III.4.2. Proposition. Let w ∈W . Then, for all t ∈ T :

Ht ∈ S(C, ρ∗w(C)) if and only if t ∈ TL(w).

Proof. ”⇐” By Definition III.2.3, t ∈ TL(w) means `(tw) < `(w). By Corol-
lary II.2.5., this in turn means that, if w = s1 · · · sk is a reduced expression, there
is an i with

t = s1 · · · si−1︸ ︷︷ ︸
=:u

sisi−1 · · · s1.

Since u−1 = si−1 · · · s1, we immediately have `(siu
−1) > `(u−1). By Lemma I.4.4.,

equivalently ρ∗u−1(C) ⊆ H+
si or, otherwise said, for all p ∈ C
〈p, ρu(αsi)〉 = 〈ρ∗u−1(p), αsi〉 > 0.
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Let then v := si · · · sk, so that w = uv.
Again, by Lemma I.4.4. `(siv) < `(v) is equivalent to

ρ∗v(C) ⊆ H−si ,
hence

ρ∗w(C) = ρ∗uρ
∗
v(C) ⊆ ρ∗u(H−si) = {ρ∗u(q) | 〈q, αsi〉 < 0}

= {ρ∗u(q) ∈ V ∗ | 〈ρ∗u(q), ρu(αsi)〉 < 0}
= {p ∈ V ∗ | 〈p, ρu(αsi)〉 < 0}.

”⇒” For the other implication we proceed by contraposition: suppose then
t 6∈ TL(w). This means `(tw) > `(w). Applying the argument carried out above to
t and tw we see that

(2) Ht ∈ S(C, ρ∗tw(C)).

Now, for every p ∈ C, writing t = usu−1 we have

〈ρ∗tw(p), ρu(αs)〉 = 〈ρ∗w(p), ρtu(αs)〉 = 〈ρ∗w(p), ρus(αs)〉
= 〈ρ∗w(p), ρu(−αs)〉 = −〈ρ∗w(p), ρu(αs)〉

and in particular

(3) Ht ∈ S(ρ∗tw(C), ρ∗w(C)).

Equations (2) and (3) together imply

Ht 6∈ S(C, ρ∗w(C))

as required. �

III.4.3. Theorem. The function

φ : W → R(AW ), w 7→ ρ∗w(C)

defines a poset isomorphism

(W,≤R) ' R(A, C)

Proof. The function φ is a bijection by Chapter I, and is order preserving by
Theorem 4.2 and Proposition 2.4 �

III.4.4. Corollary. The Bruhat order of a finite Coxeter system is a lattice.

Proof. By Chapter I the arrangement AW is simplicial. By Theorem 3.10
then, R(AW , C) is a lattice, thus – via the isomorphism of Theorem 4.3 – so is
(W,≤R). �

III.5. Sources

Section III.1 includes material from [4] and [3].
Section III.2 is a selection from [1, Chapter 3].
Section III.3 includes material from [2] and [3].
Figure 2 is taken from [2], and Figure 3 is modified from [3].
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