CHAPTER III

The weak order and posets of regions

III.1. Partially ordered sets

III.1.1. Definitions. A partially ordered set ("poset") is a pair (P, \leq) where P is a set and \leq a binary relation on P satisfying

- For all $x \in P: p \leq p$ (reflexivity)
- For all $x, y \in P: x \leq y$ and $y \leq x$ imply $x=y$ (antisymmetry)
- For all $x, y, z \in P: x \leq y$ and $y \leq z$ imply $x \leq z$ (transitivity).

We often just refer to " P " if the partial order relationis understood.
We write

$$
P_{\leq x}:=\{y \in P \mid y \leq x\} \quad P_{\geq x}:=\{y \in P \mid y \geq x\}
$$

If $x \leq y$ in P, t The interval between x and y is the set

$$
[x, y]:=P_{\geq x} \cap P_{\leq y}
$$

We say that y covers x if $[x, y]=\{x, y\}$. The Hasse diagram of a poset P is a drawing of the graph with P as set of vertices, and with an edge $x y$ whenever y covers x.
III.1.2. Examples. For $n \in \mathbb{N}_{>0}$ let
(i) $[n]$: The set $\{1,2, \ldots, n\}$ with the natural order.
(ii) $B_{n}:=(\mathscr{P}([n]), \subseteq)$, the boolean poset of all subsets of $\{1, \ldots, n\}$, ordered by inclusion.

Figure 1
III.1.3. Definitions. The poset P is bounded below if it possesses a unique minimal element, i.e., if there is an element $\hat{0} \in P$ with $P=P_{\geq \hat{0}}$. Accordingly, P is bounded below if it possesses a unique maximal element, i.e., if there is an element $\hat{1} \in P$ with $P=P_{\leq \hat{1}}$. P is bounded if it is both bounded below and bounded above.

If P is bounded below, we call atoms of P the elements covering $\hat{0}$.
Given posets $\left(P, \leq_{P}\right),\left(Q, \leq_{Q}\right)$, a function $f: P \rightarrow Q$ is order preserving if, for every $x, y \in P$,

$$
x \leq_{P} y \Rightarrow f(x) \leq_{Q} f(y)
$$

We call f an isomorphism of posets if it has an order-preserving inverse (notice: if P is finite, it is enough to show that f is order preserving and bijective).
III.1.4. Definitions. let $x, y \in P$. The meet $x \wedge y$ and the join $x \vee y$, are defined by

$$
P_{\leq x \wedge y}=P_{\leq x} \cap P_{\leq y}, \quad P_{\geq x \vee y}=P_{\geq x} \cap P_{\geq y}
$$

P is called a meet semilattice (resp. join semilattice) if $x \wedge y$ (resp. $x \vee y$) exists for all $x, y \in P$. If P is both a meet- and a join- semilattice, then P is called a lattice.

The rank of a poset P, denoted by $\mathrm{rk}(P)$, is the length of the longest chain in P. For every element $x \in P$ let $\operatorname{rk}(x):=\operatorname{rk}[\hat{0}, x]$.
III.1.5. Lemma. Let P be a bounded poset such that for every $x, y \in P$ the join $x \vee y$ exists. Then P is a lattice.

Proof. We must prove that for all $x, y \in P$ the meet $x \wedge y$ exists. To this end, choose $x, y \in P$ and consider

$$
P_{\leq x} \cap P_{\leq y}
$$

Since P is bounded, this set is not empty. Since joins exist, this set must have a unique maximal element: this element satisfies the definition of $x \wedge y$.
III.1.6. Lemma. Let P be a bounded poset of finite rank such that, for any $x, y, z \in P$, if both x, y cover z then the join $x \vee y$ exists. Then P is a lattice.

Proof. By Lemma III.1.5 it is enough to prove that $x \vee y$ exists for every $x, y \in P$. This we prove by induction on $\operatorname{rk}(P)$, the claim being clearly true if $\operatorname{rk}(P) \leq 2$.
Assume then $\operatorname{rk}(P)=k>2$ and let $x, y \in P$ that do not cover a common element. Let $a_{1}, a_{2} \in P$ be two elements covering $\hat{0}$ such that $a_{1} \leq x, a_{2} \leq y$. If $a_{1}=a_{2}$, then $x, y \in P_{\geq a_{1}}$ and by induction $x \vee y$ exists. Otherwise, simce both a_{1}, a_{2} cover $\hat{0}$ we know that $a_{1} \vee a_{2}$ exists. Now, $x \vee a_{1} \vee a_{2}$ exists in $\left[a_{1}, \hat{1}\right]$, $y \vee x \vee a_{1} \vee a_{2}$ exists in $\left[a_{2}, \hat{1}\right]$. The fact that $a_{1} \leq x$ and $a_{2} \leq y$ implies $x \vee y \vee a_{1} \vee a_{2}=x \vee y$.

III.2. Weak order of Coxeter groups

III.2.1. Definition. Let (W, S) be a Coxeter system and let $u, w \in W$. We say:
(i) $u \leq_{R} w$ if there are $s_{1} \cdots s_{k} \in S$ such that
$w=u s_{1} \cdots s_{k}$ and $\ell\left(u s_{1} \cdots s_{i}\right)=\ell(u)+i$ for all $i=1, \ldots, k$.
(ii) $u \leq_{L} w$ if there are $s_{1} \cdots s_{k} \in S$ such that
$w=s_{k} s_{k-1} \cdots s_{1} u$ and $\ell\left(s_{1} s_{1-1} \cdots s_{1} u\right)=\ell(u)+i$ for all $i=1, \ldots, k$.
It is immediate to verify that these define partial orderings on W. The two posets $\left(W, \leq_{R}\right)$ and $\left(W, \leq_{L}\right)$ are isomorphic through the function

$$
W \rightarrow W, \quad w \mapsto w^{-1}
$$

which is easily checked to be an order preserving bijection.
III.2.2. Remark. For all $u, w \in W$,
(i) $u \leq_{R} w$ if and only if $\ell(u)+\ell\left(u^{-1} w\right)=\ell(w)$.

Proof. Choose a reduced expression $u=s_{1} \cdots s_{\ell(u)}$.

- If $u \leq_{R} w$, by definition there are $s_{1}^{\prime}, \cdots, s_{l}^{\prime}$ with $w=u s_{1}^{\prime} \cdots s_{l}^{\prime}$ (so $\left.\ell\left(u^{-1} w\right) \leq l\right)$, and $\ell(w)=\ell(u)+l$. Together,

$$
\ell(u)+l=\ell(w) \stackrel{I I .2 .2 \cdot(e)}{\leq} \ell(u)+\ell\left(u^{-1} w\right) \leq \ell(u)+l
$$

implying equality throughout, hence the desired equation.

- Conversely, assume $\ell(u)+\ell\left(u^{-1} w\right)=\ell(w)$ and choose a reduced expression $u^{-1} w=s_{1}^{\prime} \cdots s_{\ell\left(u^{-1} w\right)}^{\prime}$. Suppose, by way of contradiction, that for some i we have $\ell\left(u s_{1}^{\prime} \cdots s_{i}^{\prime}\right)<\ell(u)+i$. Then we would have

$$
\begin{aligned}
\ell(w) & =\ell\left(u s_{1}^{\prime} \cdots s_{\ell\left(u^{-1} w\right)}^{\prime}\right) \stackrel{I I .2 .2 .(e)}{\leq} \ell\left(u s_{1}^{\prime} \cdots s_{i}^{\prime}\right)+\ell\left(s_{i+1}^{\prime} \cdots s_{\ell\left(u^{-1} w\right)}^{\prime}\right) \\
& <\ell(u)+i+\left(\ell\left(u^{-1} w\right)-i\right)=\ell(u)+\ell\left(u^{-1} w\right)
\end{aligned}
$$

reaching the desired contradiction.
(ii) $u \leq_{R} w$ if and only if there are reduced expressions

$$
u=s_{1} \cdots s_{k} \quad \text { and } \quad w=s_{1} \cdots s_{k} s_{1}^{\prime} \cdots s_{l}^{\prime}
$$

Proof. Analogous (exercise).
III.2.3. Recall / Definition. Remember from Definition II.2.6. that for all $w \in W$ we have a set

$$
T_{L}(w):=\{t \in T \mid \ell(t w)<\ell(w)\}
$$

which, by Corollary II.2.5., equals

$$
T_{L}(w)=\left\{s_{1} \cdots s_{i} s_{i-1} \cdots s_{1} \mid 1 \leq i \leq k\right\}
$$

where $w=s_{1} \cdots s_{k}$ is a reduced expression for w. By Lemma II.1.2. we also have

$$
\left|T_{L}(w)\right|=\ell(w)
$$

III.2.4. Proposition. For $u, w \in W, u \leq_{R} w$ if and only if $T_{L}(u) \subseteq T_{L}(w)$.

Proof. Suppose first $u \leq_{R} w$. Then, by Remark III.2.2 we can find a reduced expression $w=s_{1} \cdots s_{l}$ with $u=s_{1} \cdots s_{k}$ for some $k \leq l$. As recalled in III.2.3, we then have

$$
\begin{aligned}
T_{L}(u) & =\left\{s_{1} \cdots s_{i} s_{i-1} \cdots s_{l} \mid 1 \leq i \leq k\right\} \\
& \subseteq\left\{s_{1} \cdots s_{i} s_{i-1} \cdots s_{l} \mid 1 \leq i \leq l\right\}=T_{L}(w)
\end{aligned}
$$

For the reverse direction, suppose $T_{L}(u) \subseteq T_{L}(w)$ and choose a reduced expression $u=s_{1} \cdots s_{k}$. By Remark III.2.2 it is enough to find a reduced expression for w of the form

$$
w=s_{1} \cdots s_{k} \underbrace{s_{1}^{\prime} \cdots \cdots \cdots s_{l-k}^{\prime}}_{l-k \text { letters from } S}
$$

where $l=\ell(w)$. We will show this by proving inductively
Claim: For all $i=0, \ldots, k$ the following statement holds.
$\mathrm{A}(\mathrm{i})$: there is a reduced expression for w of the form

$$
w=s_{1} \cdots s_{i}(l-i) \text { letters from } S
$$

Proof of the claim. The statement is clearly true for $i=0$. Suppose that $A(i)$ holds for some $i<k$ and consider $A(i+1)$.
For $j=1, \ldots, k$ write $t_{j}:=s_{1} \cdots s_{j} s_{j-1} \cdots s_{k}$. With III.2.3 we know $t_{i+1} \in T_{L}(u)$, hence

$$
t_{i+1} \in T_{L}(w)
$$

With $A(i)$ we can write $w=s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{l-i}^{\prime}$ and, using III.2.3, t_{i+1} must then have the form

$$
t_{i+1}=\left(s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{m}^{\prime}\right)\left(s_{m-1}^{\prime} \cdots s_{1}^{\prime} s_{i} \cdots s_{1}\right)
$$

for some $m \leq l-i$. (In fact, III.2.3 allows also for $t_{i+1}=s_{1} \cdots s_{j} s_{j-1} \cdots s_{1}=$ t_{j} for some $j<i+1$, but we can exclude this possibility because Lemma II.1.2. implies $t_{j} \neq t_{i+1}$ for all $j \neq i+1$). We can rewrite w as

$$
\begin{aligned}
w & =t_{i+1}\left(t_{i+1} w\right) \stackrel{I I .2 .5 .(c)}{=} t_{i+1}\left(s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{m-1}^{\prime} \widehat{s_{m}^{\prime}} s_{m+1}^{\prime} \cdots s_{l-i}^{\prime}\right) \\
& =\left(s_{1} \cdots s_{i+1} s_{i} \cdots s_{1}\right) s_{1} \cdots s_{i} s_{1}^{\prime} \cdots s_{m-1}^{\prime} \widehat{s_{m}^{\prime}} s_{m+1}^{\prime} \cdots s_{l-i}^{\prime} \\
& =s_{1} \cdots s_{i+1} \underbrace{s_{1}^{\prime} \cdots \widehat{s_{m}^{\prime}} \cdots s_{l-i}^{\prime}}_{l-(i+1) \text { letters }}
\end{aligned}
$$

as required.

III.3. The poset of regions of an arrangement of hyperplanes in \mathbb{R}^{d}

III.3.1. Definitions. Let

$$
\mathcal{A}:=\left\{H_{1}, \ldots, H_{n}\right\}
$$

denote an arrangement of hyperplanes in \mathbb{R}^{d}, i.e., there are vectors $a_{1}, \ldots, a_{n} \in \mathbb{R}^{d}$ and real numbers $c_{1}, \ldots, c_{n} \in \mathbb{R}$ such that

$$
\begin{equation*}
H_{i}=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, a_{i}\right\rangle=c_{i}\right\} \tag{1}
\end{equation*}
$$

III.3. THE POSET OF REGIONS OF AN ARRANGEMENT OF HYPERPLANES IN $\mathbb{R}^{d} 5$

The arrangement \mathcal{A} is called central if all $c_{i}=0$ - this means, all hyperplanes pass through the origin of \mathbb{R}^{d}.

Once the a_{i} are chosen, for each i we can also talk about

$$
H_{i}^{+}:=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, a_{i}\right\rangle>c_{i}\right\}, \quad H_{i}^{+}:=\left\{x \in \mathbb{R}^{d} \mid\left\langle x, a_{i}\right\rangle<c_{i}\right\} .
$$

A moment's thought reveals that the complement of \mathcal{A},

$$
M(\mathcal{A}):=\mathbb{R}^{d} \backslash \bigcup_{i=1}^{n} H_{i}
$$

is a disjoint union of nonempty open cones of the form

$$
\bigcap_{i=1}^{n} H_{i}^{\epsilon_{i}} \quad \text { for some } \epsilon \in\{+,-\}^{n}
$$

These open cones are the chambers, or regions of the arrangement. The cones themselves do not depend on the choice of the a_{i}, thus we denote by

$$
\mathcal{R}(\mathcal{A})
$$

the set of chambers of \mathcal{A}.
The separation set of $C_{1}, C_{2} \in \mathcal{R}(\mathcal{A})$ is

$$
\begin{aligned}
S\left(C_{1}, C_{2}\right) & :=\left\{H_{i} \mid C_{1} \subset H_{i}^{\epsilon}, C_{2} \subset H_{i}^{-\epsilon} \text { for some } \epsilon \in\{+,-\}\right\} \\
& =\left\{H_{i} \mid \text { given } p_{1} \in C_{1}, p_{2} \in C_{2}, \text { the segment } \overline{p_{1} p_{2}} \text { meets } H_{i}\right\}
\end{aligned}
$$

For every $B \in \mathcal{R}(\mathcal{A})$ define a relation \preceq_{B} on $\mathcal{R}(\mathcal{A})$ by

$$
C_{1} \preceq_{B} C_{2} \text { if and only if } S\left(B, C_{1}\right) \subseteq S\left(B, C_{2}\right)
$$

It is easy to see that this relation is a partial order. We will write $\left[C_{1}, C_{2}\right]_{B}$ for the interval determined by \preceq_{B}.

The poset of regions of \mathcal{A} based at B is

$$
\mathcal{R}(\mathcal{A}, B): \quad \mathcal{R}(\mathcal{A}) \text { partially ordered by } \preceq_{B}
$$

Figure 2. An arrangement of hyperplanes (lines) in \mathbb{R}^{2} and (the Hasse diagram of) its poset of regions based at the shaded region.

Figure 3. A central arrangement and (the Hasse diagram of) its poset of regions.
III.3.2. Remark. $S(B, C)=\left\{H_{i} \mid C \subseteq H_{i}^{-}\right\}$.
(i) $C_{1} \preceq_{B} C_{2}$ is equivalent to $S\left(B, C_{2}\right)=S\left(B, C_{1}\right) \uplus S\left(C_{1}, C_{2}\right)$.

Proof. The right-to-left implication is trivial. For the other direction notice that there is no loss of generality in choosing a_{i} such that $B \subseteq H_{i}^{+}$for all i. Then, $S\left(B, C_{2}\right)=\left\{H_{i} \mid C_{2} \subseteq H_{i}^{-}\right\}$. Now write

$$
\begin{aligned}
S\left(B, C_{2}\right) & =\left\{H_{i} \in S\left(B, C_{2}\right) \mid C_{1} \subseteq H_{i}^{-}\right\} \uplus\left\{H_{i} \in S\left(B, C_{2}\right) \mid C_{1} \subseteq H_{i}^{+}\right\} \\
& =S\left(B, C_{1}\right) \uplus\left\{H_{i} \in \mathcal{A} \mid C_{2} \subseteq H_{i}^{-}, C_{1} \subseteq H_{i}^{+}\right\} \\
& =S\left(B, C_{1}\right) \uplus S\left(C_{1}, C_{2}\right)
\end{aligned}
$$

(ii) The identity map induces an isomorphism $\left[C_{1}, C_{2}\right]_{B} \simeq\left[C_{1}, C_{2}\right]_{C_{1}}$.

Proof. Let $R_{1}, R_{2} \in\left[C_{1}, C_{2}\right]_{B}$.
It is enough to prove that

$$
R_{1} \preceq_{B} R_{2} \Leftrightarrow R_{1} \preceq_{C_{1}} R_{2} .
$$

With (i) we write

$$
\begin{aligned}
& R_{1} \preceq_{B} R_{2} \Leftrightarrow S\left(B, R_{2}\right)=S\left(B, R_{1}\right) \uplus S\left(R_{1}, R_{2}\right) \\
& \quad C_{1} \preceq_{B} R_{1} S\left(B, C_{1}\right) \uplus S\left(C_{1}, R_{1}\right) \uplus S\left(R_{1}, R_{2}\right)
\end{aligned}
$$

Since $C_{1} \preceq_{B} R_{2}$ implies $S\left(B, R_{2}\right)=S\left(B, C_{1}\right) \uplus S\left(C_{1}, R_{2}\right)$, the above is equivalent to

$$
S\left(C_{1}, R_{2}\right)=S\left(C_{1}, R_{1}\right) \uplus S\left(R_{1}, R_{2}\right)
$$

which, by (i), means $R_{1} \preceq_{C_{1}} R_{2}$.
III.3. THE POSET OF REGIONS OF AN ARRANGEMENT OF HYPERPLANES IN $\mathbb{R}^{d} \quad 7$
III.3.3. Proposition. Clearly $\mathcal{R}(\mathcal{A}, B)$ always has a unique minimal element, namely B. If \mathcal{A} is central, $\mathcal{R}(\mathcal{A}, B)$ is bounded for every B.

Proof. Fix $B \in \mathcal{R}(\mathcal{A})$. If \mathcal{A} is central, $-B \in \mathcal{R}(\mathcal{A})$ and clearly $S(B,-B)=\mathcal{A}$. Hence, $C \preceq_{B}-B$ for all $C \in \mathcal{R}(\mathcal{A})$.
III.3.4. Definition. Let $B \in \mathcal{R}(\mathcal{A})$. The set of walls of B is

$$
\mathcal{W}(B):=\{H \in \mathcal{A} \mid \operatorname{dim} H \cap \bar{B}=d-1\}
$$

The set of faces of B is

$$
\mathscr{F}(B):=\left\{\bar{B} \cap X \mid X=\bigcap_{H \in A} H \text { for some } A \subseteq \mathcal{W}(B)\right\}
$$

it is the set of faces of the closed polytope \bar{B}. We write $\mathscr{F}^{(1)}(B)$ for the set of faces of codimension 1. Given any $F \in \mathscr{F}(B)$ let

$$
\mathcal{H}(F):=\{H \in \mathcal{A} \mid F \subseteq H\}, \quad \mathcal{W}(B, F)=\mathcal{H}(F) \cap \mathcal{W}(B)
$$

Call a chamber $B \in \mathcal{R}(\mathcal{A})$ simplicial if the hyperplanes in $\mathcal{W}(B)$ have linearly independend normals. This is equivalent to saying that \bar{B} is a simplicial cone.

Figure 4. The set $\mathscr{F}\left(B_{2}\right)$ (partially ordered by inclusion) and the set $\mathcal{W}\left(B_{2}, F\right)$ for the chamber B_{2} and the face F of the arrangement of Figure 3, where the set $\mathcal{H}(F)$ is highlighted in yellow.
III.3.5. Lemma. Let $B \in \mathcal{R}(\mathcal{A})$.
(i) For every $F \in \mathscr{F}(B)$ there is a unique chamber $R(F) \in \mathcal{R}(\mathcal{A})$ such that

$$
S(B, R(F))=\mathcal{H}(F)
$$

Moreover, $S(B, C) \supseteq \mathcal{W}(B, F)$ implies $S(B, R(F))=\mathcal{H}(F)$, and hence $C \succeq{ }_{B} R(F)$.
(ii) The set of atoms of $\mathcal{R}(\mathcal{A}, B)$ is $\left\{R(F) \mid F \in \mathscr{F}^{(1)}(B)\right\}$
(iii) If B is simplicial, any set $R\left(F_{1}\right), \ldots, R\left(F_{k}\right)$ of atoms of $\mathcal{R}(\mathcal{A}, B)$ has the join

$$
R\left(F_{1}\right) \vee \ldots \vee R\left(F_{k}\right)=R\left(F_{1} \cap \ldots \cap F_{k}\right)
$$

Proof.

(i) Let $p \in \operatorname{relint}(F)$.

First, we claim: there is $\epsilon>0$ such that $B_{\epsilon}(p) \cap H=\emptyset$ for every hyperplane $H \notin \mathcal{H}(F)$.
[Proof. p is in the complement, hence in a unique chamber C_{p} of the arrangement $\mathcal{A} \backslash \mathcal{H}(F)$. Since C_{p} is open, there is $\epsilon>0$ with $B_{\epsilon}(p) \subseteq C_{p}$.
This satisfies the claim.]
Choose then $x \in B \cap B_{\epsilon}(p)$ (which is nonempty because $p \in \bar{C}$) and consider $q:=p-x \in B_{\epsilon}(p)$. Then q is in the complement of \mathcal{A}.
[Proof:

- for $H \in \mathcal{H}(F)$, the line $\overline{p x}$ does not lie in H, hence only meets H in x.
- For $H \in \mathcal{A} \backslash \mathcal{H}(F), q \in B_{\epsilon}(p)$ implies $q \notin H$.]

Thus q is contained in a unique chamber of \mathcal{A}, that we call $R(F)$, for which

$$
S(B, R(F))=\mathcal{H}(F)
$$

Every other $C^{\prime} \in \mathcal{R}(\mathcal{A})$ with $S\left(B, C^{\prime}\right) \supseteq \mathcal{H}(F)$ must lie in the chamber of $\mathcal{H}(F)$ containing $R(F)$, and for any $y \in C^{\prime}$ the line $\overline{y p}$ meets a nonempty subset of $\mathcal{A} \backslash \mathcal{H}(F)$ and, continuing it by $<\epsilon$ past p, will further meet only hyperplanes in $\mathcal{H}(F)$. Hence we have a segment from B to C^{\prime} that meets more than the hyperplanes in $\mathcal{H}(F)$. This proves uniqueness.

Looking closer at the situation, we see that in the central arrangement $\mathcal{H}(F)-p$, the set of walls of the chamber $-(B-p) \ni q-p$ is, by symmetry, again $\mathcal{W}(B, F)-p$. Therefore, in $\mathcal{H}(F)$ requiring $S(B, C) \supseteq \mathcal{W}(B, F)$ implies $S(B, C) \supseteq \mathcal{H}(F)$.
(ii) Clearly, for every $F \in \mathscr{F}^{(1)}(B), R(F)$ is an atom. Conversely, if C is an atom of $\mathcal{R}(\mathcal{A}, B)$ then $|S(B, C)|=1$. This means that for $x \in B, y \in C$, the segment $\overline{x y}$ meets only H, and does so in a point $p \in H \cap \bar{C}$ which is in (thus: possesses an ϵ-ball inside) the complement of $\mathcal{A} \backslash\{H\}$. Therefore $p \in \operatorname{relint}(F)$ for $F=\bar{B} \cap H \in \mathscr{F}^{(1)}(B)$, and by the uniqueness of (i), $C=R(F)$.
(iii) If B is simplicial, then $F:=F_{1} \cap \ldots \cap F_{k}$ is a codimension k face with $\mathcal{W}(B, F)=\left\{H_{1}, \ldots, H_{k}\right\}$, where $F_{i}=\bar{C} \cap H_{i}$.
We know from (i) that $R(F) \succeq_{B} R\left(F_{i}\right)$ for all $i=1, \ldots, k$.
On the other hand, $C \succeq_{B} R\left(F_{i}\right)$ for all $i=1, \ldots, k$ implies $S(B, C) \supseteq$ $\mathcal{W}(B, F)$ and thus by (i) again $C \succeq_{B} R(F)$.
III.3.6. Theorem. If \mathcal{A} is a simplicial arrangement, then the poset $\mathcal{R}(\mathcal{A}, B)$ is a lattice for all choices of B.

Proof. Fix an arbitrary $B \in \mathcal{R}(\mathcal{A})$. We will use Lemma III.1.6 in order to show that $\mathcal{R}(\mathcal{A}, B)$ is a lattice.

Let $C_{1}, C_{2}, C \in \mathcal{R}(\mathcal{A}, B)$ and suppose that both C_{1} and C_{2} cover some C.
Since C is simplicial, Lemma III.3.5.(iii) shows that the join $C_{1} \vee_{C} C_{2}$ exists in $\mathcal{R}(\mathcal{A}, C)$. It is, by definition, containd in $[C,-B]_{C}$. Via the isomorphism of Remark III.3.2.(ii) between the intervals $[C,-B]_{B}$ and $[C,-B]_{C}$, we conclude that $C_{1} \vee_{C} C_{2}=C_{1} \vee_{B} C_{2}$, so the join exists in $\mathcal{R}(\mathcal{A}, B)$ as well.
III.3.7. Remark. There are examples of non-simplicial arrangements \mathcal{A} with some $B \in \mathcal{R}(\mathcal{A})$ for which $\mathcal{R}(\mathcal{A}, B)$ is a lattice. However, the following characterization of simplicial arrangements holds.
III.3.8. Theorem. A central arrangement \mathcal{A} is simplicial if and only if $\mathcal{R}(\mathcal{A}, B)$ is a lattice for every choice of B.

Proof. Theorem III.3.6 proves one direction. The interested reader can find a proof of the other direction as [3, Theorem 3.1].

III.4. The weak order of finite Coxeter groups is a lattice

Let (W, S) be a finite Coxeter group. Recall from Chapter I the set of roots

$$
\Phi_{W}=\left\{\rho_{w}\left(\alpha_{s}\right) \mid w \in W, s \in S\right\} \subseteq V \simeq \mathbb{R}^{d}
$$

Recall the associated Coxeter arrangement in V^{*} :

$$
\mathcal{A}=\left\{\rho_{w}^{*}\left(H_{s}\right) \mid s \in S\right\}
$$

To every reflection $t=u s u^{-1} \in T$ we can associate a hyperplane

$$
H_{t}=\left\{p \in V^{*} \mid\left\langle p, \rho_{u}\left(\alpha_{s}\right)\right\rangle=0\right\} .
$$

III.4.1. Lemma. $\mathcal{A}=\left\{H_{t} \mid t \in T\right\}$.

Proof. From the definition we see

$$
H_{t}=\left\{p \in V^{*} \mid\left\langle\rho_{u^{-1}}^{*}(p), \alpha_{s}\right\rangle=0\right\}=\left\{\rho_{u}^{*}(q) \mid\left\langle q, \alpha_{s}\right\rangle=0\right\}=\rho_{u}^{*}\left(H_{s}\right)
$$

and with an analogous computation $\rho_{w}^{*}\left(H_{s}\right)=H_{w s w^{-1}}$, thus the claim holds.
III.4.2. Proposition. Let $w \in W$. Then, for all $t \in T$:

$$
H_{t} \in S\left(C, \rho_{w}^{*}(C)\right) \text { if and only if } t \in T_{L}(w)
$$

Proof. " \Leftarrow " By Definition III.2.3, $t \in T_{L}(w)$ means $\ell(t w)<\ell(w)$. By Corollary II.2.5., this in turn means that, if $w=s_{1} \cdots s_{k}$ is a reduced expression, there is an i with

$$
t=\underbrace{s_{1} \cdots s_{i-1}}_{=: u} s_{i} s_{i-1} \cdots s_{1} .
$$

Since $u^{-1}=s_{i-1} \cdots s_{1}$, we immediately have $\ell\left(s_{i} u^{-1}\right)>\ell\left(u^{-1}\right)$. By Lemma I.4.4., equivalently $\rho_{u^{-1}}^{*}(C) \subseteq H_{s_{i}}^{+}$or, otherwise said, for all $p \in C$

$$
\left\langle p, \rho_{u}\left(\alpha_{s_{i}}\right)\right\rangle=\left\langle\rho_{u^{-1}}^{*}(p), \alpha_{s_{i}}\right\rangle>0
$$

Let then $v:=s_{i} \cdots s_{k}$, so that $w=u v$.
Again, by Lemma I.4.4. $\ell\left(s_{i} v\right)<\ell(v)$ is equivalent to

$$
\rho_{v}^{*}(C) \subseteq H_{s_{i}}^{-}
$$

hence

$$
\begin{aligned}
\rho_{w}^{*}(C)=\rho_{u}^{*} \rho_{v}^{*}(C) \subseteq \rho_{u}^{*}\left(H_{s_{i}}^{-}\right) & =\left\{\rho_{u}^{*}(q) \mid\left\langle q, \alpha_{s_{i}}\right\rangle<0\right\} \\
& =\left\{\rho_{u}^{*}(q) \in V^{*} \mid\left\langle\rho_{u}^{*}(q), \rho_{u}\left(\alpha_{s_{i}}\right)\right\rangle<0\right\} \\
& =\left\{p \in V^{*} \mid\left\langle p, \rho_{u}\left(\alpha_{s_{i}}\right)\right\rangle<0\right\}
\end{aligned}
$$

$" \Rightarrow "$ For the other implication we proceed by contraposition: suppose then $t \notin T_{L}(w)$. This means $\ell(t w)>\ell(w)$. Applying the argument carried out above to t and $t w$ we see that

$$
\begin{equation*}
H_{t} \in S\left(C, \rho_{t w}^{*}(C)\right) \tag{2}
\end{equation*}
$$

Now, for every $p \in C$, writing $t=u s u^{-1}$ we have

$$
\begin{gathered}
\left\langle\rho_{t w}^{*}(p), \rho_{u}\left(\alpha_{s}\right)\right\rangle=\left\langle\rho_{w}^{*}(p), \rho_{t u}\left(\alpha_{s}\right)\right\rangle=\left\langle\rho_{w}^{*}(p), \rho_{u s}\left(\alpha_{s}\right)\right\rangle \\
=\left\langle\rho_{w}^{*}(p), \rho_{u}\left(-\alpha_{s}\right)\right\rangle=-\left\langle\rho_{w}^{*}(p), \rho_{u}\left(\alpha_{s}\right)\right\rangle
\end{gathered}
$$

and in particular

$$
\begin{equation*}
H_{t} \in S\left(\rho_{t w}^{*}(C), \rho_{w}^{*}(C)\right) \tag{3}
\end{equation*}
$$

Equations (2) and (3) together imply

$$
H_{t} \notin S\left(C, \rho_{w}^{*}(C)\right)
$$

as required.
III.4.3. Theorem. The function

$$
\phi: W \rightarrow \mathcal{R}\left(\mathcal{A}_{W}\right), \quad w \mapsto \rho_{w}^{*}(C)
$$

defines a poset isomorphism

$$
\left(W, \leq_{R}\right) \simeq \mathcal{R}(\mathcal{A}, C)
$$

Proof. The function ϕ is a bijection by Chapter I, and is order preserving by Theorem 4.2 and Proposition 2.4
III.4.4. Corollary. The Bruhat order of a finite Coxeter system is a lattice.

Proof. By Chapter I the arrangement \mathcal{A}_{W} is simplicial. By Theorem 3.10 then, $\mathcal{R}\left(\mathcal{A}_{W}, C\right)$ is a lattice, thus - via the isomorphism of Theorem 4.3 - so is $\left(W, \leq_{R}\right)$.

III.5. Sources

Section III. 1 includes material from [4] and [3].
Section III. 2 is a selection from [1, Chapter 3].
Section III. 3 includes material from [2] and [3].
Figure 2 is taken from [2], and Figure 3 is modified from [3].

Bibliography

[1] Anders Björner, Francesco Brenti. Combinatorics of Coxeter groups. Springer GTM.
[2] Paul Edelman. A partial order on the regions of \mathbb{R}^{d} dissected by hyperplanes. Transactions of the American Mathematical Society, Vol. 283, n. 2, 1984, 617-631.
[3] Anders Björner, Paul Edelman, Günter Ziegler. Arrangements with a lattice of regions. Discrete and Computational Geometry, Vol. 5, 1990, p. 263-288.
[4] Ricard Stanley. Enumerative combinatorics, Vol. 1. Oxford University Press.

