

Proposition: Let A integral matrix of Sull our rank:
$$A = \begin{bmatrix} & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\$$

So: A
So: A

$$v: \begin{bmatrix} x_0 \\ 0 \\ 0 \end{bmatrix}$$

 $v: \begin{bmatrix} x_0 \\ 0 \\ 0 \end{bmatrix}$
 $v: \begin{bmatrix} x_0 \\ 0 \\ 0 \end{bmatrix}$
 $v: \begin{bmatrix} x_0 \\ 0 \\ 0 \end{bmatrix}$
 $v: fv = watimal winov B$
 $v: fv = watimal winov B$

_

$$= "P_{b} integral + b = A unimodulou" Let B way. where of A B
Pick a nonsingular max. minor B
Prove: B' integral (by Remark this is enough)
Sworph to prove. B' $c \in \mathbb{Z}^{n}$ for all $c \in \mathbb{Z}^{m}$. (thick $c = C$:
 $B' = [f] = c = [f]$ for all $c \in \mathbb{Z}^{m}$. (there besis)
 $B' = [f] = c = [f]$
Let $c \in \mathbb{Z}^{n}$, choose $y \in \mathbb{Z}^{n}$ s.t. $2 := y + 3^{2}c \ge 0$:
Then $B \ge = 3y + c \in \mathbb{Z}^{n}$, and
abder "extending $\ge by \ge 0$ components": A B $[f] \ge 1$
 $A \ge = B \ge -b$, and ≥ 1 is verter of P_{b} (satisfies a line indep. constants)
Thus: ≥ 1 is integral, and so are \ge and $B' = B$$$

Definition Let P be a conner paytope. A subdivision of P is any polytopal complex It with |K| = P. A triangulation of P is any subdivision T of P s.d. every member of T is a simples. Goal today: every polytope has a triangulation

Set up let
$$V \stackrel{\text{them}}{=} \mathbb{R}^{d}$$
, let $P = \operatorname{conv}(V)$, $(V_{0}, h(v_{0})) + \ell$ P^{Th}
 $W \log q$ $\dim(P) = d$.
Let $h: V \rightarrow \mathbb{R}_{>0}$, $('lift'' V to a set V^{(h)})$
 $V^{(h)} := \{(v, h(v))\} \vee \varepsilon V\} \subseteq \mathbb{R}^{d+1}$
 $V^{(h)} := \{(v, h(v))\} \vee \varepsilon V\} \subseteq \mathbb{R}^{d+1}$
 $\mathsf{M}_{\mathsf{T}} \stackrel{(u, h(v_{0}))}{=} \mathbb{R}^{\mathsf{T}}$
 $\mathsf{M}_{\mathsf{T}} \stackrel{\mathsf{ph}}{=} (v, h(v)) + \ell = 0$, and consider
 $P^{\mathsf{Th}} := \operatorname{Conv} V^{(h)} + \ell = - \operatorname{"epiqraph"} of P.$
 $\mathsf{N}_{\mathsf{T}} \stackrel{\mathsf{ph}}{=} \mathbb{R}^{d^{\mathsf{T}}} \rightarrow \mathbb{R}^{\mathsf{d}}$, $(x, t) \mapsto x$. Note: $\mathsf{T}(\ell) = 0$,
 $v \in \mathsf{T}(\mathbb{P}^{\mathsf{Th}}) = P$.

.

Lemma:
$$P^{Th} \subseteq H^{\leq}$$
 implies $\alpha \leq 0$. If $H^{=}$ is supporting hyperplane,
then face $\overline{F} = P^{Th} \cap H^{=}$ bounded if and only if $\chi < 0$.

Constlary Every bounded face of Pth is a face of some bounded
facet.
Pf: Recall (last week) that every proper face ~~T~~
is intersection of facets:
$$\overline{T} = \bigcap_{i=1}^{n} \overline{T_{ik}}$$
 facets
If all Fi' unbounded, then for every $p \in \overline{T}$
we have: $p \in \overline{T_{i}}$, hence $p \in \overline{T} \in \overline{T}$
t is unbounded.
Claim follows by contraposition.
Affer du break: Tweak theirs s.f. $\overline{T}(focus of p^{th})$ triang of P

Yest
$$\left(\begin{array}{c} y_{i} \\ y_{i} \\$$

Now the desired values of h: V -> R>0 are those for which (] y(Iv43) + O

(non-constant) polynomial in hi

By analytic reasons, such an h exists.

Theorem Every polyhedron
$$P = conv(v)$$

has a triangulation all of whose vertices
are in V.
Proof: Choose h as in the Lemma Consider
 $T := \{T(\tau) \mid T$ bounded face of $P^{Th}\}$
Obs: The vertices (O-dim. members) of T are (a subset of) V.
Let F be a bounded face of P^{Th}
where (a) F is a simpler (by guernisty od h)
(b) The redividion of T to F is bijective
(inverse is "explicit equation of H^{\pm})
(c) For XSF, conv(TR(X)) = $T(conv(X))$
K (d) $T(T)$ is a simpler with vertices $T(vert d = T)$,
(e) Faces of $T(T)$ one exactly projections of faces of T .
perimer(f) $T = \{faces of T(T), F a bounded face f \}$

Claim: T is triangulation of P
(1) Every member of T is a simplex.
-> clear by prinous discussion (items (d),(f))
(z)
$$|T| = P$$
 "S" follows from $T(P^{Th}) = P$
For "2": enough to prove that interior of P is in $T(P^{Th})$
By controposition: pick $p \in int(P)$, $E > 0$ st. $B_E(p) \in int(P)$
Let x st. $x+l = P^{Th} \cap (p+l)$. x on boudary of P^{Th} ,
belowys to a face supported by H^2
Tf H^2 is vertical:
H
Thus x is in a bounded face $\Rightarrow T(X) \in |T|$

(3) T is a phytopal complex.
Thust show: for every
$$T_{A}, T_{L} \in C$$
,
 $T_{A} \cap T_{L}$ is face of both
Everyth to show. $\Pi(T_{A} \cap T_{L}) = T_{A} \cap T_{L}$
 $a \leq a \leq drivide$, since $T_{i} = \Pi(T_{i}')$
 $a \leq a \leq drivide$, since $T_{i} = \Pi(T_{i}')$
 $a \leq a \leq drivide$, since $T_{i} = \Pi(T_{i}')$
 $a \leq a \leq drivide$, since $T_{i} = \Pi(T_{i}')$
 $f_{i} = (P_{i}, t_{i}) \in T_{A} \cap T_{L}$.
Then as in the produce consider
 $(P_{i}, t_{i}) \in T_{A} \cap (P + L)$ whog $t_{i} < t_{L}$
 $(P_{i}, t_{2}) \in F_{A} \cap (P + L)$
and leade at H supporting hyp. of T_{2}
 $Then (P_{i}, t_{i}) \in H^{2}$

Corollary: Every polyhedison & can be triangulated vitte no new vertices!

PG: Take V = vertices of B, apply Theorem. 3