

A totally unimodular it every square mimer has del. $0,1,-1$
A unimoduler if every maximal square minor has del. $\mathrm{O} \pm 1$.
Main example: Incidence matrices of graphs are totally unimodular
Deurash: An integer, invertible square matrix B is unimodular iff B^{-1} is integral.
Pf. If B unimedular, then $B^{-1}=\frac{1}{\operatorname{det}(B)} \operatorname{Adj}(B)$
If B^{-1} integul: $\operatorname{det}(B)=\frac{1}{\operatorname{det}\left(\gamma^{\prime}\right)}$

Proposition: Let A integme matrix of full vow rank: $A \cong$ \square
A unimodular $\Leftrightarrow\left\{\begin{array}{l}\text { for every vector } b \in \mathbb{Z}^{m}, \\ P_{b}:=\{x \mid A x=b, x \geqslant 0\}\end{array}\right.$ has only integral vertices
Prof: " $\Rightarrow{ }^{\prime \prime} P_{b}=\left\{\frac{\frac{-1}{} \frac{A}{-\hat{A}}}{\frac{A}{-\hat{A}}}\right] \times\left[\frac{0}{-b}\right]$
If $v a$ vertex of P_{b} :
n lin. indep. constraints satisfied with

$$
\begin{aligned}
v & =\left\{x \in P_{b} \mid \bar{E} x=\bar{E}\right\} \\
& \Rightarrow\left[\begin{array}{|}
\hline & v=E
\end{array}\right.
\end{aligned}
$$

Claim: colum of A corresponding to nonzero comp. of v are lin. indep.

(Otherwise there is lin. dep $\stackrel{\sum_{i=1}^{4} d_{i} a_{i}=0}{\longrightarrow \text { not all }=0}$

So: A

Note $B_{v}=\| \|\left[\begin{array}{l}\neq 0 \\ 0 \\ b\end{array}\right]=\begin{gathered}" b " \\ \text { fatso }\end{gathered}$
Complete $\left\{a_{i}\right\}_{\text {各 }}$ to a column-basis to a square, integer maximal minor B
with: $B^{-1} b=v$ at every nonzero coup. of v.

Now we know: B unimodular $\Rightarrow B^{-1}$ integral! (remark), therefore $B^{-1} b$ integral, and so: nonzero comp. of v are inteymen as

* "Pbinteynel $\forall b \Rightarrow A$ unimodulaw" Let B wax-minor of A \square
Pickle a nousiugular max minor B
Prove: B^{-1} integral (by Remark this is enough)
Enough to prove: $\left.\quad \begin{array}{l}B^{-1} c \in \mathbb{Z}^{n} \quad \text { for all } c \in \mathbb{Z}^{\text {mo }} .\end{array} \quad \begin{array}{c}\text { thing } c=e_{i} \\ \text { standural bess } \\ \text { vector }\end{array}\right)$

$$
B^{-1}\left[\begin{array}{l}
0 \\
0 \\
\vdots \\
i
\end{array}\right]<i=\left[c^{1}\right]^{i-t h} \text { chem } \& B^{-1}
$$

Let $c \in \mathbb{Z}^{n}$, choose $y \in \mathbb{Z}$ net. $z:=y+3^{-1} c \geqslant 0$
Then $B z=3 y+c \in \mathbb{Z}^{n}$, and after "extending z by zero component"

$A z^{\prime}=B z=b$, and z^{\prime} is vertex of P_{b} (satisfies n himininde. constraints)
Thus: z^{\prime} is integral, and so ave z ana $B^{-1} C$ B

Proposition: Let A integme matrix of full vow rank: $A \xlongequal{=}$ \square
A unimodular $\Leftrightarrow\left\{\begin{array}{l}\text { for every vector } b \in \mathbb{Z}^{m} \\ P_{b}:=\{x \mid A x=b, x \geqslant 0\}\end{array}\right.$, has only integral vertices
Total proof: $\left\{\begin{array}{l}B \text { inv, internal: unimedular } \Leftrightarrow \mathrm{B}^{-1} \text { interne } \\ \text { Iurutibility of maximal minos of } A \leftrightarrow \text { non-perturbability }\end{array}\right.$ of vertices. "s"

Theorem, For an integral matrix A TFAE
(i) A totally unimedular
(ii) All vertices of $\{x \mid A x \leqslant b, x \geqslant 0\}$ are integral, for all integral b.
(iii) All vertices of $\{x \mid a \leqslant A x \leqslant b, c \leqslant x \leqslant d\}$ are integrand, for all integral a, b, c, d.

Proof: Move matrix yoga. \rightarrow lecture notes.

Triangulations
Recall $X \subseteq \mathbb{R}^{d}$ affively indep.

if $\operatorname{dim}(\operatorname{cour}(x))=|x|-1$. Simplex: any conc. hull of an affinely indep set of points.

We want to properly define a "triangulation" as a subdivision of a polytope into siuglias,
Definition: A pobyledral/polytopar complex is a collection K of polyludm/polytopes s.t. (1) every face of every element of K is in K
(2) For any two $P, Q \in K, P \cap Q$ is a face of both.

The support of K is

$$
|K k|=\bigcup_{P \in J} P
$$

Definition Let P be a convex pelytope. A subdivision of P is any polytipal couples k with $|k|=P$. A triangulation of P is any subdivision T of P s.d. every member of T is a simplest.

Goal today: every pdytup has a triangulation "with no new vertices"

Setup Let $V \mathbb{R}^{d}$, let $P=\operatorname{conv}(V)$. wog $\operatorname{dim}(P)=d$.
Let $h: V \rightarrow \mathbb{R}_{>0}$, "lift" v to a set

$$
V^{(h)}:=\{(v, h(v)) \mid v \in V\} \subseteq \mathbb{R}^{d+1}
$$

Moreover, let $l:=\{(0, t) \mid t \geqslant 0\}$, and consider

$$
P^{i h}:=\text { pobludun)} V^{(h)}+l^{\mathbb{C}^{\text {cone }}}-\text { "epigraph" of } P \text {. }
$$

Natural projection $\pi: \mathbb{R}^{d+1} \rightarrow \mathbb{R}^{d},(x, t) \hookrightarrow x$. Note: $\pi(l)=0$, so $\pi\left(P^{14}\right)=P$.

We know (2 weeks ago): $P^{\text {in }}$ is a phyludron.
Let us study supporting hyperplanes to $P^{\text {th }}$.

Supporting, hyperplane: $H^{=}=\left\{(x, t) \in \mathbb{R}^{d r} \mid\langle(a, \alpha),(x, t)\rangle=b\right\}$

$$
H^{\leqslant}=\left\{\begin{array}{c}
\cdots\langle(a, x),(x, t)\rangle \leq b\} \\
\langle a, x\rangle+\alpha t
\end{array}\right.
$$

Lemma: $P^{\hat{h}} \subseteq H^{\leqslant}$implies $\alpha \leqslant 0$. If $H^{=}$is supporting he perplane, then face $\bar{F}=P^{i h} n H^{=}$banded if and only if $\alpha<0$.

PR: If $p^{\text {in }} \subseteq H^{\leqslant}$, then for every $p \in P^{\text {in }}$ the whole $p+l \leq H^{\leqslant}$, ie.

Contlayy Every bounded face of $P^{\text {in }}$ is a face of some bounded facet.

Pf: Recall (last wee) that every proper face \mathcal{F} is intersection of facets: $F=\bigcap_{i=1}^{k} F_{i}$

If all F_{i} unbounded, then for wery $p \in \bar{F}$
we have: $p \in F_{i}$, here pol $\subseteq F_{i} \quad \forall i$
Thus. $p d \in \mp$, so F is unbounded.
Claim bellores by contraposition.
After the break: Tweak things s.f. $\pi\binom{$ bounded }{ faces of $P^{\text {th }}}$ triany. of P

Lumen, h can be chosen so that: if $\left\{v_{0},-, v_{d}\right\} \leq V_{\text {max. atfinuly }}$ indies. then the $\left(v_{i}, h\left(v_{i}\right)\right)$ are atfinely independent \& they span a hyperplane that does not contain any other point of $V(4)$
If: LIt $V=\left\{v_{0}, \ldots, v_{m}\right\}$, consider any of. indef. $I=\left\{i_{i},-i_{d}\right\} \in\binom{[m]}{d+1} \geq$ $\left\{\left(v_{i}, h\left(v_{i}\right)\right)\right\}_{i \in I}$ Aff.indep "automatically"

$$
\text { For -: } \underbrace{\left|\begin{array}{cccc}
v_{i o} & \cdots & v_{i d} & v_{i} \\
h\left(v_{i o l}\right. & h\left(v_{i d i}\right) & h\left(v_{j}\right) \\
1 & 1 & 1
\end{array}\right|}_{\gamma(I v i, j)} \neq 0
$$

Now the desired values of $h: V \rightarrow \mathbb{R}_{>0}$ are H hose for which

$$
\underbrace{\prod_{1, j}}_{I, j} \gamma(I u\{j\}) \neq 0
$$

$$
\text { (non-constant) polynomial in } h_{i} \text {. }
$$

By analytic reasons, such an h exists.

Theorem Every polyhedron $P=\operatorname{conv}(v)$ has a triangulation all of whose vertias are in V.

Proof: Choose h as in the Lemmas. Consider

$$
T:=\left\{\pi(\mp) \mid \mp \text { bounded face of } P^{T h}\right\}
$$

Obs: The vertices (O-dim. members) of I are (a subset of) V Let \mp be a bounded facet of $p^{\text {Th }}$
wive (a) Pis a simplex (by gevericity of h)
s (b) The restriction of π to 7 is bijective (inverse is "explicit equation of $\mathrm{H}^{=}$)
(c) For $X \subseteq \mp, \quad \operatorname{couv}(\pi(x))=\pi(\operatorname{couv}(x))$
(d) $\pi(7)$ is a simplex with vartion π (vert of \bar{F}),

(e) Faces of $\pi(F)$ are exactly projections of faces of \bar{F}.
$\underset{\text { cosplay }}{\operatorname{previos}}(f) T=\{$ faces of $\pi(F), F$ a bounded face $t\}$

Claim: \tilde{L} is triangulation of P
(1) Every number of T is a simplex. \rightarrow clear by priviouediscussion (items ($(\alpha),(A)$)
(2) $|\tau|=P \quad " \subseteq$ "follows from $\pi\left(P^{i h}\right)=P$

For " 2 ": enough to prove that interior of P is in $\pi\left(P^{\text {ph }}\right)$ By coutrugosition: pick $p \in \operatorname{int}(P), \varepsilon>0$ st. $B_{\varepsilon}(P) \subseteq \operatorname{int}(P)$ Let x st. $x+l=p^{\uparrow h} \cap(p+l)$. x on boundary of $p^{i n}$, belongs to a face supported on H^{2} If $\mathrm{H}^{=}$is vertical:

Thus x is in a bounded face $\Rightarrow T(x) \in|\tau|$
(3) τ is a pdytopal complex.

Must show: for every $T_{1}, T_{2} \in \tau$, $T_{1} \cap T_{2}$ is face of both

Enough to show: $\Pi\left(\bar{F}_{1} \cap T_{2}\right)=T_{1} \cap T_{2}$

- E is trivial, since $T_{i}=\pi\left(F_{c}^{\prime}\right)$
- 2 Suppose there is
unfortunate.

$$
p \in T_{1} \cap T_{2} \backslash \pi\left(F_{1} \cap F_{2}\right) .
$$

Then as in the picture consider

$$
\begin{aligned}
& \left(p, t_{1}\right) \in F_{1} n(p+l) \\
& \left(p, t_{2}\right) \in F_{2} \cap(p+l),
\end{aligned} \quad w \log t_{1}<t_{2}
$$

and lock at H supporting hyp. of F_{2}
Then $\left(p, t_{1}\right) \in H \geqslant B$

Corollary: Every polyhedron 8 can be triangulated with no new vertices!

Pf: Take $V=$ vertices of 3 , apply Theorem. B

