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Chapter 0

Some recurring notations

P(X) or 2X the set of all subsets of a set X.

[n] The set {1, 2, . . . ,n}. Set [0] := ∅.

Bn The boolean poset on n elements, i.e., the set P([n]) ordered by inclu-
sion.(

X
k

)
, where X is a finite set and k ∈N, is the set of all k-element subsets of X.

If X is finite and has, say, n elements, then |
(
X
k

)
| =
(
n
k

)
BA, where A,B are sets, denotes the set of all functions A → B. If A,B are

finite, the cardinality of this set is |B||A|
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Chapter 1

Graphs, colorings and flows
Disclaimer. We will only briefly review the basics of graph theory that are strictly
necessary for our purposes. For more background or further discussion of some topics
the reader can refer to one of the many excellent dedicated textbooks. Our formal
setup follows mostly Tutte’s book [7], while we occasionally update some terminology
in order to facilitate access to more modern literature such as [3, 4].

1.1 Graphs

Definition 1.1.1. A graph G = (V ,E,h, t) is a quadruple consisting of a set of
vertices V , a set of Edges E and two functions h, t : E→ V that assign to every
edge its “ends”. Given any set A ⊆ E of edges we let V(A) := h(A) ∪ t(A) be
the set of all ends of edges in A.

We will often omit braces when designing one-element sets, if no need for
specification arises. For instance, given e ∈ E we will write V(e) for V({e}).

A loop in G is any e ∈ E with |V(e)| = 1. Two edges e, e ′ ∈ E are called
parallel if V(e) = V(e ′). The graph G is called simple if it has no loops nor
parallel edges. A trail in G is any sequence v0, e1, v1, . . . , ek, vk of vertices and
edges such that {vi−1, vi} = V(ei) for all i = 1, . . . ,k. It is called closed (or a
“cycle”) if k > 0 and v0 = vk. A path is a trail where all edges and all vertices
are pairwise distinct (in this case we will talk about a “path from v0 to vk”. A
circuit in G is a minimal closed trail, i.e., a closed trail which, after removal of
any edge, is a path (in particular, every loop is a circuit).

v0 v1 = v4

v2v3

v5

e1
e2

v0 v1

v3v2

v4

e1
e2

v0 = v5 v4

v2v1

v3

e1
e2

v0 = v7 v5

v2 = v3v1 = v6

v4

e3

e1 = e6
e2

Figure 1: A trail, a path, a circuit and a closed trail that is not a circuit.
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Let T ⊆ V be a set of vertices of G the vertex-induced subgraph defined by T
is the graph G(T) := (T ,E ′,h, t) where E ′ = {e ∈ E | {h(e), t(e)} ⊆ T } is the set
of edges with both endpoints in T .

Definition 1.1.2. Let G be a graph. We call G connected if for any two ver-
tices v,w ∈ V there is a path from v to w in G. A connected component of G
is any maximal connected vertex-induced subgraph, i.e., any vertex-induced
subgraph G(T) that is connected and such that, for every v ∈ V \ T , G(T ∪ {v})
is not connected . We define

c(G) := the number of connected components of G.

(a) (b)

Figure 2: Two connected graphs

Two fundamental operations on graphs are deletion and contraction of
edges.

Definition 1.1.3 (Edge deletion). Let G = (V ,E,h, t) be a graph and let A ⊆ E.
The deletion of A from G is the graph G \A := (V ,E \A,h|E\A, t|E\A) on the
same vertex set as G but without the edges in A, and with the functions h, t
restricted accordingly. If A = {e} consists of a single element, we sometimes
write G \ e for G \ {e}. The “restriction” of G to A is G[A] := G \ (E \A).

Remark-Notation 1.1.4. An edge e ∈ E is called an isthmus if c(G) < c(G \ e).

Remark 1.1.5 (On the word “subgraph”). Every graph of the form G[A] we
will call a “subgraph” of G. Notice the difference with the notion of "vertex
induced subgraph" discussed earlier on. The latter will not appear in the
following, so we feel safe in our terminological choice.

Definition 1.1.6 (Edge contraction). Let G = (V ,E,h, t) be a graph and let
A ⊆ E. The contraction of A in G is the graph G/A := (V ′,E ′,h ′, t ′) with
edge set E ′ := E \A and vertex set V ′ := V/ ∼ given as the set of equivalence
classes of the equivalence relation on V generated by v ∼ w if {v,w} = V(e)

for some e ∈ A. The functions h ′ and t ′ are given by h ′(e) = [h(e)]∼, resp.
t ′(e) = [t(e)]∼.

Intuitively, deleting A from Gmeans removing every edge in A, while con-
tracting A means “shrinking” every edge in A and identifying its endpoint-
vertices.
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(a) (b)

Figure 3: Deletion (l.-h.s.) and contraction (r.-h.s.) of an edge in the graphs
depicted in Figure 2.(a), resp. Figure 2.(b).

1.2 Colorings

Definition 1.2.1. Let G = (V ,E,h, t) be a graph. A coloring of G is any function
γ : V → N>0 such that γ(h(e)) 6= γ(t(e)) for every e ∈ E. Given k ∈ N, we
call γ a k-coloring of G if γ(V) 6 k. The set of all k-colorings of a given graph
G is denoted by Γ (k)G .

Definition 1.2.2. Let G = (V ,E,h, t) be a finite graph. The chromatic function
of G is the function

χN

G : N→N, k 7→ |Γ
(k)
G |.

Example 1.2.3.

(1) If G has a loop, then obviously χN

G(k) = 0 for all k.

(2) If e, e ′ are two parallel edges of G, then χN

G(k) = χ
N

G\e
(k) = χN

G\e ′(k) for
all k.

(3) If G has no edges, i.e., E = ∅, then χN

G(k) = k
|V | for all k.

(4) The complete graph on n vertices is the simple graph Kn on an n−element
vertex set with one edge connecting any two distinct vertices. Then,
χN

Kn
(k) = k!/(k−n)! for all k.

(a) χN

G(k) = k(k− 1)(k− 2)2 (b) χN

G(k) = k(k− 1)(k− 2)

Figure 4: Two graphs with their chromatic functions.
.

Proposition 1.2.4. Let G be a finite graph, and let e ∈ E be any edge of G that is not
a loop. Then,

χN

G(k) = χ
N

G\e(k) − χ
N

G/e(k) for all k ∈N

6



Together with Examples 1.2.4. (1) and (3), this determines the chromatic function
uniquely.

Proof. We clearly have Γ (k)G ⊆ Γ
(k)
G\e

. Moreover every γ ∈ Γ
(k)
G\e

\ Γ
(k)
G has

γ(h(e)) = γ(t(e)) and thus induces a valid coloring γ ′ of G/e via γ ′ : V ′ →N

with γ ′([v]∼) = γ(v) for all v. Conversely, every γ ′ ∈ Γ (k)
G/e

induces a unique

γ ∈ Γ (k)
G\e

. Therefore Γ (k)
G\e

\ Γ
(k)
G and Γ (k)

G/e
have the same cardinality, and thus

|Γ
(k)
G\e

| = |Γ
(k)
G |+ |Γ

(k)
G/e

|. The claim follows.

Corollary-Definition 1.2.5. For every given finite graph G there is a polynomial
χG ∈ Z[x] such that χG(k) = χN

G(k) for all k ∈N. This χG is called the chromatic
polynomial of G.

We are going to give what is called a “combinatorial interpretation” of the
coefficients of the chromatic polynomial of a graph. This means that, although
we know that we can write

χG(t) =

n∑
i=0

ait
i (1.1)

for some integers ai, we would like to be able to determine such coefficients.
We present one of the earliest results in this vein, obtained by Hassler Whitney
in 1934 [8]. We will follow Whitney’s original argument, using an elementary
but extremely versatile tool in enumerative combinatorics.

Principle of inclusion-exclusion. Let (Xi)i∈I be a family of (not nec-
essarily distinct) subsets of a finite set X. Then

∣∣X \

(⋃
i∈I
Xi

)∣∣ =|X|−
∑
i∈I

|Xi|+
∑
i,j∈I
i 6=j

|Xi ∩Xj|− . . . . . . + (−1)|I|
∣∣ ⋂
i∈I
Xi
∣∣.

Proposition 1.2.6. Let G be a graph with n vertices. Then the chromatic polynomial
satisfies

χG(t) =
∑
A⊆E

(−1)|A|tc(G[A]). (1.2)

In particular, if we let gp,q denote the number of A ⊆ E such that |A| = p and
c(G[A]) = q, then the coefficients of the expansion in Equation (1.1) can be written
as ai =

∑n
j=0(−1)jgi,j for all i.

Proof. Fix a positive integer k and let us call k-precoloring of G any function
γ̃ : V → [k], i.e., an arbitrary assignment of one of the k colors to the vertices
of G. There are k|V | precolorings of G. Such a precoloring will sometimes
not be a valid coloring of G, as there might be some “bad” edges of G joining
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two vertices of the same color. Given A ⊆ E, we let Pre(A) be the set of all
precolorings γ̃ whose set of bad edges is A.
Formally, we set Pre(A) := {γ̃ : V → N>0 | γ̃(h(e)) = γ̃(t(e))∀e ∈ A}. Notice
that

(1) Pre(A1)∩ Pre(A2) = Pre(A1 ∪A2) for all A1,A2 ⊆ E,

(2) |Pre(A)| = k|c(G[A])|.

The idea is now to count all precolorings of G that do not have any bad
edges, i.e., to enumerate the set

ΓG(k) = k
V \

⋃
e∈E

Pre(e)

We can apply the principle of inclusion-exclusion to our situation, and
write

χG(k) = |Pre(∅)| = k|V | −
∑
∅(A⊆E

(−1)|A||Pre(A)|

=
∑
A⊆E

(−1)|A|kc(A), (1.3)

where in the last equality we used that |V | = c(G[∅]), hence k|V | = (−1)∅kc(G[∅]).
The claim follows.

Definition 1.2.7. Let G be a finite graph and fix any total order < on its set E
of edges. A broken circuit of G is any set of edges that is obtained by deleting
the maximal element of any circuit. More precisely, a broken circuit is any set
of the form C \ max< C where C is a circuit of G.

A no-broken-circuit set (or just an “nbc-set”) of G is any A ⊆ E that does not
contain any broken circuit. Let nbc(G) denote the family of all nbc-sets of G
and for every i let nbci(G) denote the number of nbc-sets of cardinality i.

1

2 34

5

Figure 5: The graph for Example 1.2.8
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Example 1.2.8. Consider the graph in Figure 5. Its chromatic polynomial has
been computed in Figure 4 and can be expanded to

χG(t) = t(t− 1)(t− 2)2 = t4 − 5t3 + 8t2 − 4t

We identify the set of edges with {1, 2, . . . , 5} according to the numbering dis-
played in Figure 5. We consider on this set the natural total order of integer
numbers.

This graph has three circuits, with edge-sets 124, 345 and 1235. Therefore,
there are three broken circuits: 12, 34, 123. The no-broken-circuit sets are then

Size 0: ∅ nbc0(G) = 1
Size 1: 1, 2, 3, 4, 5 nbc1(G) = 5
Size 2: 13, 14, 15, 23, 24, 25, 35 45 nbc2(G) = 8
Size 3: 135, 145, 235, 245 nbc3(G) = 4
Size 4: none nbc4(G) = 0

Theorem 1.2.9. Let G be a graph on n vertices. Then the coefficients of the chromatic
polynomial of G as written in Equation (1.1) satisfy

an−i = (−1)i nbci(G)

for all i.

Proof. Recall the total ordering < on E. We extend this to a total ordering on
the set of all broken circuits, with the property that B < B ′ implies max<(B) 6
max<(B ′), for any two broken circuits B,B ′. (1) We can now enumerate all
broken circuits in this ordering as B1,B2, . . . ,Bs and define a partition of the
set of subsets of the edge set E as

2E = E1 t . . .t Es+1, with

E1 := {A ⊆ E | B1 ⊆ A } and Ei := {A ⊆ E | Bi ⊆ A} \ Ei−1 for i > 1,

so the elements of Ei are all subsets that contain Bi but none of the Bj for j < i.
Let us now consider the summands in Equation (1.3) subdivided according to
the Eis:

χG(k) =

∑
A∈E1

(−1)|A|kc(G[A])

+ . . . +

 ∑
A∈Es+1

(−1)|A|kc(G[A])


For every i = 1, . . . , s now let ei be the edge that has been removed in order
to form the broken circuit Bi. The ordering that we have chosen is such that

1There are several such total orderings - for instance, we can consider the lexicographic ordering,
which is defined by setting B < B ′ if and only if max<(B \B ′ ∪B ′ \B) ∈ B ′. (The name
derives from the following alternative definition of this total order: for every broken circuit B
consider the ordered list λ1(B) > λ2(B) > . . . of its elements in decreasing order, and set
B < B ′ if λi(B) < λi(B ′) for the smallest i where the lists differ.)
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ei 6∈ Bj for all j < i (in fact, ei > maxBi > maxBj). Therefore, if we consider
the bipartition

Ei = {A ∈ Ei | ei ∈ A}︸ ︷︷ ︸
=:E +

i

t {A ∈ Ei | ei 6∈ A}︸ ︷︷ ︸
=:E −

i

,

the function ε : E +
i → E −

i , ε(A) := A \ {ei}, is a bijection.

∅

1 2 3 4 5

12 13 14 15 23 24 25 34 35 45

123 124 125 134 135 145 234 345 235 245

12345

1234 1235 1245 1345 2345

Figure 6: In the situation of Example 1.2.8 the construction of the proof of
Theorem 1.2.9 would consider the broken circuits B1 = 12, B2 = 123, B3 = 34,
leading to the following families of sets: E1 as shaded blue in the picture,
E2 = ∅, E3 as shaded orange in the picture, E4 = nbc(G).

Notice that, since the ends of ei are already connected by the path Bi in
each A ∈ E −

i , by applying ε the number of connected components does not
change: c(G[ε(A)]) = c(G[A]), but the cardinality decreases by one. Therefore,
the contributions of the summands A and ε(A) cancel out in the sum:∑
A∈Ei

(−1)|A|kc(G[A]) =
∑
A∈E +

i

(
(−1)|A|kc(G[A]) + (−1)|ε(A)|kc(G[ε(A)])

)
= 0.

Therefore, only the sum associated to Es+1 contributes to the expression of
χG(k). Now notice that in fact Es+1 = nbc(G). Moreover, no A ∈ Es+1
contains any circuit of G, and thus c(G[A]) = |V |− |A| for such A. We can now
rewrite

χG(k) =
∑

A∈Es+1

(−1)|A|kc(G[A]) =

n∑
i=0

(−1)i nbci(G)kn−i

as desired.

10



1.3 Flows

Definition 1.3.1. Let G = (V ,E,h, t) be a graph. An integer flow on G is any
function f : E→ Z such that for every v ∈ V we have∑

e∈h−1(v)

f(e) −
∑

e∈t−1(v)

f(e) = 0. (1.4)

Let k ∈N \ {0}. We call f an integer k-flow if |f(e)| < k for all e ∈ E.
A modular k-flow is any f : E→ Zk satisfying Equation (1.4) understood as

a congruence modulo k (i.e., as an equation in the Abelian group Zk).
Any flow f is called nowhere zero if 0 6∈ f(E). The set of all nowhere zero

integer k-flows, resp. nowhere zero modular k-flows, is denoted byΦ(k)
G , resp.

Φ
(k)
G .

Remark 1.3.2.

• The definition of a flow on a graph can be given with values in an ar-
bitrary Abelian group. Relevant examples include real-valued flows, of
interest in optimization of networks, or complex-valued flows, arising
from the analysis of electrical networks. In fact, Equation (1.4) is eas-
ily seen to correspond to Kirchoff’s conservation condition for flows in
networks.

Definition 1.3.3. Let G be a finite graph. The integer flow function and the
modular flow function of G are defined as

ϕN

G : N→N, k 7→ |Φ
(k)
G |, ϕN

G : N→N, k 7→ |Φ
(k)
G |,

and they “count” the number of nowhere-zero integer k-flows, resp. nowhere
zero modular k-flows on G.

Example 1.3.4.

(1) If G has no edges, clearly ϕN

G(k) = ϕ
N

G(k) = 1 for every k

(2) If e is a loop of G, then ϕN

G(k) = (k− 1)ϕN

G\e
(k).

Lemma 1.3.5. If G has an isthmus, then ϕN

G(k) = ϕ
N

G(k) = 0 for all k.

Proof. Let e be an isthmus of G and let f be a flow on G. Let K be the connected
component of G containing e, and let S be the vertex set of one of the two
connected components of K that arise deleting e. Then, up to sign, f(e) is the
total flow f(S,V \ S) and thus, by Exercise I.7, equals zero.

Theorem 1.3.6. Let G be a finite graph and let e be an edge of G. If e is an isthmus,
then ϕN

G ≡ 0. If e is not a loop nor an isthmus of G,

ϕN

G(k) = ϕ
N

G/e(k) −ϕ
N

G\e(k) for every k. (1.5)
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Together with Lemma 1.3.5 and Example 1.3.6.(1), this relation determines the func-
tion ϕN

G uniquely.

Proof. Let v,w be the ends of e, and set

Σv :=
∑
e∈E\e
h(e)=v

f(e) −
∑
e∈E\e
t(e)=v

f(e), Σw :=
∑
e∈E\e
h(e)=w

f(e) −
∑
e∈E\e
t(e)=w

f(e).

Now any f ∈ Φ(k)
G\e, viewed as a function on the edges of G/e, satisfies

trivially Equation (1.4) at every vertex of G/e other than the vertex [v]∼, i.e.,
the one formed merging v and w. At this vertex, Equation (1.4) in G/e is
Σv + Σw = 0 and this is trivially satisfied since f, being a flow on G \ e,

satisfies both Σv = 0 and Σw = 0. Thus, Φ(k)
G\e ⊆ Φ

(k)
G/e.

On the other hand, an f ∈ Φ(k)
G/e that is not in Φ

(k)
G\e is one for which

Σv = −Σw 6= 0. This means that it extends uniquely to a nowhere-zero flow

f ′ ∈ Φ(k)
G by setting, for every g ∈ E,

f ′(g) :=

{
f(g) g 6= e
Σt(e) g = e

It remains to check that, in fact, Σv = −Σw 6= 0 must hold also for ev-
ery nowhere-zero flow on G, so that indeed there is a bijection between

Φ
(k)
G/e \Φ

(k)
G\e and Φ(k)

G . The claim follows now in view of the already proved

containment Φ(k)
G\e ⊆ Φ

(k)
G/e.

Corollary-Definition 1.3.7. For every given finite graph G there is a polynomial
ϕG ∈ Z[x] such that ϕG(k) = ϕN

G(k) for all k ∈ N. This ϕG is called the flow
polynomial of G.

Example 1.3.8. We can compute the flow polynomial for the graphs in Fig-
ures 2 and 4 and compare them with the associated chromatic polynomial.

G Figure 2a Figure 2b Figure 4a Figure 4b
χG(t) t(t− 1)(t− 2) t(t− 1) t(t− 1)(t− 2)2 t(t− 1)(t− 2)
ϕG(t) (t− 1) (t− 1)(t− 2) (t− 1)(t− 2) (k− 1)(k− 2)2

We have seen that for some graphs, for example K4, the chromatic and
flow polynomials are related up to a multiplication by the variable. In the
table above we see two pairs graphs where the chromatic polynomial of the
one is the flow polynomial of the other (again, up to a multiplication of the
variable), and vice-versa. Those graphs are related by what is called “planar
duality”.
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Digression: planar duality of graphs.
Let G = (V ,E, t, s) be a graph. A planar drawing of G is a set of points

and paths in the plane satisfying some properties. More precisely, a draw-
ing consists of

• one point pv ∈ R2 for each v ∈ V , so that the function v 7→ pv is
injective and pV is discrete in R2.

• a simple, regular path ωe for every e ∈ E, i.e., an injective and
continuous function ωe : [0, 1] → R2 with ωe(0) = pt(e) and
ωe(1) = ph(e), and for which ∇ωe(t) 6= 0 for all t ∈]0, 1[.

We require that the paths representing edges only intersect at points la-
beled by the vertices incident to the edge under consideration. Precisely:
for every e, e ′ ∈ E, we require that ωe(t) = ωe(t ′) implies {t, t ′} ⊆ {0, 1}.

This definition entails that if C is the set of edges of a circuit of G,
the set

⋃
e∈Cωe([0, 1]) is a Jordan curve. Thus, by the Jordan curve the-

orem every circuit of G determines a bipartition of R2 in two open and
connected regions (one bounded and one unbounded). The (open, con-
nected) parts of the partition of R2 that refines all bipartitions obtained by
circuits of G are called the regions determined by the given drawing of G.
They are all bounded and contractible, with exception of one unbounded
(and in general not-contractible) region. The boundary of every region is
a circuit of G drawn in the plane.

We can define now a planar dual G∗ to G as follows. The vertices of
G∗ are the regions of the drawing, and the edge-set can be taken to be the
same as the edge-set of G, but for clarity we will call it E∗, with a fixed
bijection e 7→ e∗ between E and E∗. The ends of any e∗ are determined as
follows: look at the drawing ωe of the edge e and notice that ωe([0, 1]) is
contained in the (topological) boundary of at most two regions, say R1,R2
(where we will allow R1 = R2). As we go along the boundary of R1 and
R2 in positive direction (counterclockwise), we’ll meet in one case (say R1)
first t(e) and then h(e), in the other (say R2) the reverse will happen. We
will then say that t∗(e∗) = R1, h∗(e∗) = R2.

Alternatively (and most commonly), one obtains a drawing of G∗ by
choosing a point (representing a vertex of G∗) in each region of the given
drawing of G and drawing a simple regular path (representing an edge
e∗ of G∗) across each edge e of G, whose endpoints are the vertices of
the region(s) in whose boundary ωe([0, 1]) lays, and that crosses the path
representing e at a unique crossing point p(e). The ends t(e∗) and h(e∗)
are assigned so that the pair (∇ωe,∇ωe∗) taken at p(e) is a positively
oriented basis of the plane. (intuitively: “e∗ crosses e from left to right”,
see Figure 7).

Different drawings of the same abstract graph G can give rise to non-
isomorphic duals. However, it is always true that (G∗)∗ is isomorphic to
G.

13



t(e)h(e)

t(e∗)

h(e∗)

Figure 7: Illustration of the “orientation” of primal-dual edges

Proposition 1.3.9. Let G be a finite, connected planar graph and let G∗ be its planar
dual. For every k ∈ N \ {0}, there is a k-to-one surjective map between the set Γ (k)G

of k-colorings of G and the set Φ(k)
G∗ of nowhere-zero k-flows on G∗.

Corollary 1.3.10. Let G be a finite, connected planar graph. Then χG(t) = tϕG∗(t).

Proof of Proposition 1.3.9. Let G be any given finite planar graph and consider
its planar dual G∗. In particular, every edge e of G is paired with an edge e∗

of G∗, i.e., the one that crosses e (at a unique crossing point p(e)) in the given
planar drawing of G.

Now, given a k-coloring γ of G define a function f∗ : E∗ → Zk as follows:

fγ(e
∗) := γ(t(e)) − γ(h(e)),

where on the r.h.s. we take the congruence class modulo k. It is easy to see that
γ being a proper coloring implies that fγ is nowhere zero. In order to check
the condition for fγ to be a flow, consider any vertex v∗ of G∗. This vertex
corresponds to a region of the plane that is bounded by a circuit of G. Call
C : v1, e1, v2, . . . this circuit, with vertices and edges listed in counterclockwise
direction. Then every edge of G∗ that insists on v∗ is of the form (ei)

∗ for
some ei in C, and by construction of the planar dual we have that v∗ = t(e∗i )
if and only if vi = t(ei) (and thus vi+1 = h(ei)), see Figure 8.

Now we can compute Equation (1.4)∑
v∗=t(e∗)

fγ(e
∗) −

∑
v∗=h(e∗)

fγ(e
∗) =

∑
vi=t(ei)

γ(t(ei)) − γ(h(ei)) +
∑

vi=h(ei)

γ(h(ei)) − γ(t(ei)) =

∑
vi=t(ei)

γ(vi) − γ(vi+1) +
∑

vi=h(ei)

γ(vi) − γ(vi+1) =
∑
vi

γ(vi) − γ(vi) = 0

Now, fix a vertex v0 ∈ V . Let Γ be the set of all k-colorings of G and let
Φ be the set of all nowhere-zero k-flows on G∗. We already know that the
function

Γ
(k)
G → Φ

(k)
G × {1, . . . ,k}, γ 7→ (fγ,γ(v0))

14



v∗

t(ei) = vih(ei) = vj

t(ej) = vj+1

h(ej) = vj

h(e∗i )

t(e∗j )

Figure 8: Here v∗ = t(e∗j ) = h(e
∗
i )

is well-defined. We are left with proving that it is bijective, which we will do
by providing an inverse. Let f be a nowhere-zero k-flow on G∗ and let i0 ∈ [k].
For every vertex v of G choose a path v0, e1, v1, . . . , vl = v. Define

γf(v) ∈ {1, . . .k}, γf(v) ≡ i0 +
∑

h(ei)=vi

f((ei)
∗) −

∑
t(ei)=vi

f((ei)
∗) mod k

Notice that γf(v) does not depend on the choice of paths (we prove this as
Exercise I.8) and is thus well-defined. Now notice that for any edge e we have
γf(h(e)) − γf(t(e)) = f(e∗) and thus the fact that f is nowhere-zero implies
that γf is a proper k-coloring.

Since the double dual of a planar graph is the graph itself, Corollary 1.3.10
can be rewritten as saying that ϕG(t) = t−1χG∗(t) for any connected planar
graph G. Thus Proposition 1.2.6 can give us an explicit expression for the flow
polynomial of a connected planar graph, provided we can interpret c(G∗[A])
in terms of G.

Definition 1.3.11. Let G be any finite graph. Define the cyclomatic number of
G to be

β1(G) := |E|− |V |+ c(G).

As the name suggests, this is the first Betti number of the graph G viewed
as a 1-dimensional simplicial complex. If G is planar, this is one less than the
number of faces.

Lemma 1.3.12. Let G be any finite graph, e an edge of G. Then

β1(G \ e) =

{
β1(G) if e is an isthmus,
β1(G) − 1 otherwise.

(1.6)
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β1(G/e) =

{
β1(G) − 1 if e is a loop,
β1(G) otherwise.

(1.7)

Theorem 1.3.13. Let G be a finite graph. The modular flow polynomial of G can be
written as

ϕG(t) = (−1)|E|
∑
A⊆E

(−1)|A|tβ1(G[A])

Proof. Let PG(t) denote the sum on the r.h.s. in the claim. We have to show
that it equals ϕG(t). We argue using Theorem 1.3.6, which determines the
flow polynomial fully.

• If G has no edges, then the sum that defines PG(t) has only one sum-
mand (for A = ∅) and the cyclomatic number is 0. Thus, PG(t) =

(−1)0(−1)0t0 = 1.

• Let e be an isthmus of G. With Lemma 1.3.12 we compute

PG(t) = (−1)|E|
∑

A⊆E\{e}

(
(−1)|A|tβ1(G[A]) + (−1)|A∪{e}|tβ1(G[A∪{e}])

)
= (−1)|E|

∑
A⊆E\{e}

(
(−1)|A|tβ1(G[A]) − (−1)|A|tβ1(G[A])

)
= 0

• Let e be a loop of G. Again, we compute with Lemma 1.3.12:

PG(t) = (−1)|E|
∑

A⊆E\{e}

(
(−1)|A|tβ1(G[A]) + (−1)|A∪{e}|tβ1(G[A∪{e}])

)
= (−1)|E|

∑
A⊆E\{e}

(1 − t)(−1)|A|tβ1(G[A])

= (t− 1)(−1)|E\{e}|
∑

A⊆E\{e}
(−1)|A|tβ1(G[A]) = (t− 1)PG\e(t)

• Now suppose that e is no loop. Then, contracting e does not change the
cyclomatic number. We compute

PG(t) = (−1)|E|

 ∑
e∈A⊆E

(−1)|A|tβ1(G[A]/e) +
∑

A⊆E\{e}
(−1)|A|tβ1(G[A])


= (−1)|E|−1

 ∑
A⊆E\{e}

(−1)|A|tβ1(G[A]/e) −
∑

A⊆E\{e}
(−1)|A|tβ1(G[A])


= PG/e(t) − PG\e(t).

This completes the proof.
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Exercises I

I.1 Show that a finite graph G with n vertices and m edges is cycle-free if
and only if c(G) = n−m.

I.2 The degree of a vertex v of a finite graph G is the “total number of vertex-
edge incidences at v”, i.e.,

d(v) = |{e ∈ E | h(e) = v}|+ |{e ∈ E | t(e) = v}|.

Prove that a finite graph G contains a cycle if and only if it contains a
subgraph G[A] whose vertex-degrees are all even.

I.3 Let G be a finite graph and A,B ⊆ E two disjoint subsets of edges of G.
Prove that (G/A) \B = (G \B)/A.

I.4 Give a formal proof of the principle of inclusion-exclusion.

I.5 Determine the chromatic polynomial of the graph in Figure 9 using
deletion-contraction. Check your result using no-broken-circuit sets.

Figure 9

I.6 Determine the modular flow polynomial of the graph in Figure 9 using
deletion-contraction. Check your result using no-broken-circuit sets of
the planar dual.

I.7 Let G = (V ,E,h, t) be a finite graph and let S, T ⊆ be two subsets of
its vertex set. Let f be a flow on G with values in an abelian group
A, written additively (i.e., we write "+" for the group operation and
consider a function f : E → A satisfying Equation (1.4) as an identity
between group elements with respect to the group operation).

The total S-T flow is defined as

f(S, T) :=
∑
e∈E
t(e)∈S
h(e)∈T

f(e) −
∑
e∈E
h(e)∈S
t(e)∈T

f(e)

Prove that, if V = St T is a bipartition of V , then f(S, T) = 0.
(Hint: as a first step, try to prove that f(S,S) = 0 and f(S,V) = 0 for all
S ⊆ V)
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I.8 Prove that the definition of γf in the proof of Proposition 1.3.9 does
not depend on the choice of paths. (Hint: you may use the previous
exercise.)
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Chapter 2

The Tutte polynomial

2.1 Definition

From our discussion of colorings and modular flows, we see the importance
of two graph statistics: the number of connected components and the cyclo-
matic number. We can then consider the associated two-variable generating
function.

Definition 2.1.1.
QG(v,w) :=

∑
A⊆E

vc(G[A])wβ1(G[A]) (2.1)

Remark 2.1.2. This polynomial, called the “dichromate” of G, generalizes both
the chromatic and the flow polynomial of the graph. In fact we have

χG(t) = (−1)|V |QG(−t,−1), ϕG(t) = (−1)|E|+|V |QG(−1,−t)

Example 2.1.3. • If G has no edges, then QG(v,w) = v|V |

• If G has one vertex and a single loop, then QG(v,w) = v(1 +w)

• If G has two vertices and a single isthmus, then QG(v,w) = v(1 + v)

Proposition 2.1.4. Let G be a finite graph, e an edge of G.

• If e is a loop or an isthmus ofG, thenQG(v,w) = v−1QG[e](v,w)QG\e(v,w)

• If e is neither a loop nor an isthmus of G, then QG(v,w) = QG\e(v,w) +
QG/e(v,w)

Proof. We first expand

QG(v,w) =
∑

A⊆E\e
vc(G[A])wβ1(G[A]) +

∑
e∈A⊆E

vc(G[A])wβ1(G[A])
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Now if e is a loop, the second term can be written as

w
∑

e∈A⊆E
vc(G[A\e])wβ1(G[A\e]),

whence QG(v,w) = (1 +w)QG\e(v,w) in this case. If e is an isthmus the first
term can be written as

v
∑

A⊆E\e
vc(G[A])wβ1(G[A]),

and then QG(v,w) = (v+ 1)QG\e(v,w).
Otherwise, the second term equals∑

e∈A⊆E
vc(G/e[A\e])wβ1(G/e[A\e])

and we conclude QG(v,w) = QG\e(v,w) +QG/e(v,w).

The idea of the dichromate QG goes back to W. T. Tutte, but nowadays it is
the following variation on it that is commonly called the “Tutte polynomial”
of the graph G.

Definition 2.1.5. The Tutte polynomial of a finite graph G is

TG(x,y) := (x− 1)−c(G)QG(x− 1,y− 1)

=
∑
A⊆E

(x− 1)r(G)−r(G[A])(y− 1)n(G[A])

Where we write r and n for the rank and nullity of a finite graph, defined as

r(G) = |V |− c(G), n(G) = |E|− r(G). (2.2)

Remark 2.1.6. Exercise ... shows that the rank is is the cardinality of any maxi-
mal cycle-free set of edges of G, and the cyclomatic number equals the number
of edges that do not participate in such a cycle-free set (i.e., the nullity of G).
In particular, rank and nullity are properties that can be detected without
referring to connectivity properties such as isolated vertices etc.

Remark 2.1.7. We can translate Remark 2.1.2 in terms of the Tutte polynomial.

χG(t) = (−1)r(G)tc(G)TG(1 − t, 0), ϕG(t) = (−1)|E|+r(G)TG(0, 1 − t)

2.2 Duality and matroids

Lemma 2.2.1. Let G be a finite planar graph, and let G∗ a planar dual to G. Then,

r(G[Ac]) = r(G) −n(G∗[A∗]).
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Proof. The equality holds tautologically if A is empty. Now suppose that for
some A ( E the equality holds and choose any e ∈ E \A. Now, G[(A∪ {e})c] =
G[Ac] \ e and we know that deleting an element drops the rank if and only if
that element is an isthmus, i.e., there was a connected component K of G[Ac]
that is disconnected when removing e. Now notice that K is the part of G
that lies in one of the bounded regions determined by G∗[A], call it R. Now
removing e disconnects K exactly when adding e∗ to G∗[A∗] subdivides R into
two parts, making n(G∗[A∗]) increase. This concludes the inductive step and
proves the claim.

Corollary 2.2.2. If G is a finite planar graph and G∗ a dual to G, then

TG∗(x,y) = TG(y, x).

We can now readily re-prove the analog of Corollary 1.3.10 for general
planar graphs.

Corollary 2.2.3. For any finite planar graph G we have

χG(t) = t
c(G)ϕG∗(t)

These last results depend on the fact that planar graphs have duals. The
crucial relationship between rank and nullity of primal and dual graphs is
expressed in Lemma 2.2.1. From there, recalling the definition of nullity and
the fact that the dual to a planar graph has as many edges as the primal
graph, we can state that the main “feature” of dual graphs is to provide an
interpretation of the quantity

r(G[E \A]) − r(G) + |E \A|

as the rank function of another graph (i.e., as r(G∗[A∗])).
Our next goal is to introduce a class of integer-valued functions that in-

cludes rank functions of graphs and that is closed under the above “duality”
operation.

Definition 2.2.4. Given any finite set E and any function r : 2E → N, let us
write

r∗ : 2E →N, r∗(A) = r(E \A) − r(E) + |A|.

Remark 2.2.5. The operation r 7→ r∗ is an involution on the set of all functions
r : 2E →N with r(∅) = 0. In fact:

(r∗)∗(A) = r∗(E \A) − r∗(E) + |A|

= r(A) − r(E) + |A|− r(∅) + r(E) − |E|+ |E \A| = r(A) − r(∅) = r(A)

Definition 2.2.6. Let E be a finite set. We call ME the set of all functions
r : 2E →N satisfying:
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(r0) for every A ⊆ E: 0 6 r(A) 6 |A|;

(r1) for every A ⊆ B ⊆ E: r(A) 6 r(B);

(r2) for all A,B ⊆ E: r(A) + r(B) > r(A∪B) + r(A∩B).

The elements of ME are called “matroid rank functions” on E (or just "ma-
troids on the ground set E”).

Remark 2.2.7. Let r be a matroid rank function on the set E and r ′ a matroid
rank function on the set E ′. We call these matroids isomorphic if there is a
bijection b : E→ E ′ with r = r ′ ◦ b.

Theorem 2.2.8. Let E be a finite set. The set ME is closed under duality, i.e., if r is
in ME so is also r∗.

Proof. Suppose that r satisfies (r0)– (r2) and consider r∗.

– r∗ satisfies (r0). Let A ⊆ E. By (r2) applied to A and E \A and (r0) we
have r(A) + r(E \A) > r(E), hence with (r1) r(E \A) − r(E) > −r(A) >
−|A|, thus r∗(A) = r(E \A) − r(E) + |A| > 0. On the other hand, (r1)
applied to E \A ⊆ E gives r(E \A) − r(E) 6 0 and thus r∗(A) = r(E \

A) − r(E) + |A| 6 |A|.

– r∗ satisfies (r1). Let A ⊆ B ⊆ E. Then (r2) applied to E \ B and B \A,
together with (r0), gives r(E \ B) + r(B \A) > r(E \A). With this, we
compute

r∗(B) − r∗(A) = r(E \B) + |B|− r(E \A) − |A|

> |B|− |A|− r(B \A) = |B \A|− r(B \A) > 0

where in the last inequality we used (r0) for B \A.

– r∗ satisfies (r2). Let A,B ⊆ E. We compute directly

r∗(A) + r∗(B) = r(E \A) − r(E) + |A|+ r(E \B) − r(E) + |B|

> r((E \A)∩ (E \B)) + |A|+ r((E \A)∪ (E \B)) + |B|− 2r(E)

= r(E \ (A∪B)) − r(E) + |A|+ r(E \ (A∩B)) − r(E) + |B|

= r∗(A∪B) + r∗(A∩B) + |A|− |A∪B|− |A∩B|+ |B|︸ ︷︷ ︸
=0

where the inequality is (r2) for r applied to E \A and E \B.

Proposition-Definition 2.2.9. Let G be any finite graph on the edge set E and, for
every A ⊆ E write, for brevity, rG(A) := r(G[A]). Then, rG ∈ME, and we call this
the “rank function of the cycle matroid of G”.
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Remark 2.2.10. We distinguish two special rank functions. Call rL the rank
function of the graph consisting of a single loop (so rL : 2{e} 7→ N with rL
constant equal to 0). Moreover, call rI the rank function of the graph consisting
of a single isthmus (so rI : 2{e} 7→N with rI({e}) = 1).

Remark 2.2.11. Lemma 2.2.1 says that, for every planar graph G, r∗G = rG∗ .
The class ME however contains r∗G for all graphs with edge set E. Thus the
notion of duality for matroids extends the planar graph duality to general
finite graphs.

We will prove a more general statement than Proposition-Definition 2.2.9,
motivated by the following construction.

Definition 2.2.12. Let G be a finite graph on the edge set E with vertex set V .
For every e ∈ E define a vector we ∈ (F2)

V as follows. For every v ∈ V let

(we)v :=

{
1 if h(e) 6= t(e) and v ∈ {h(e), t(e)}
0 otherwise

Lemma 2.2.13. Let G be any finite graph with edge set E and recall Definition 2.2.12.
A given A ⊆ E contains a cycle if and only if the set {wa | a ∈ A} is linearly
dependent over F2.

Proof. Any F2-linear dependence in {wa}a∈A is of the form
∑
i∈Dwi = 0

for some D ⊆ A, and this means that every component of the sum
∑
i∈Dwi

contains an even number of 1s. The parity of the number of 1s in the v-th
component is equivalent modulo 2 to the degree of the vertex v in G[D], and
thus linear dependencies in {wa}a∈A correspond to subgraphs of G[A] with
all-even degrees. Now the claim follows with Exercise I.2, where it is proved
that A ⊆ E contains a cycle if and only if G[A] contains a subgraph G[D] with
all degrees even.

Corollary 2.2.14. Let G be any finite graph with edge set E and recall Defini-
tion 2.2.12. Then, for every A ⊆ E we have

rG(A) = dimF2 span{wa | a ∈ A}.

Proof. The corollary follows by noting that rG(A) is the size of any maximal
cycle-free subset of A which, via the previous lemma, is exactly the size of a
maximal linear independent subset of {wa}a∈A.

Theorem 2.2.15. Let E be any finite set, n ∈ N and let K be any field. Consider
an E-tuple of vectors in the vectorspace Kn, i.e., a matrix w ∈ Kn×E. Then the
function

r : 2E →N, A 7→ dimK span{wa | a ∈ A}
is in the set ME. We say that the matroid defined by r is representable over the field
K.
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Proof. Properties (r0) and (r1) can be proved immediately from the notion of
dimension of the span of a finite set of vectors. For (r2) let A,B ⊆ E and recall
that, for any two subspaces W1,W2 of a given finite-dimensional vectorspace,
we have the equality

dimW1 + dimW2 = dim(W1 ∩W2) + dim(W1 ∪W2)

Property (r2) now follows by applying this equality toW1 = span{wa | a ∈ A},
W2 = span{wb | b ∈ B} and noticing that

span{we | e ∈ A∪B} ⊆ span{wa | a ∈ A}∩ span{wb | b ∈ B}.

We close this section with a discussion of operations on matroids that mim-
ick deletion and contraction of edges in graphs.

Definition 2.2.16. Let r : 2E → N be a matroid rank function, and let e ∈ E.
We call e a loop of the matroid defined by r if r(e) = 0, and we call e an isthmus
if r(E \ e) = r(E) − 1.

The rank function of the restriction of the matroid to any A ⊆ E, written
r[A], is just the restriction of r, as a function, to 2A ⊆ 2E (i.e., r[A](X) = r(X)

for all X ⊆ A). The deletion of A has rank function r\A := r[E\A] equal to the
restriction of r to E \A. The rank function of the contraction of any A ⊆ E is

r/A : 2E\A →N, r/A(X) := r(X∪A) − r(A)

Any matroid that is obtained by a sequence of contractions and deletions
from a given matroid is called a minor of the given matroid.

2.3 Universality

To every matroid rank function r ∈ME we can associate the Tutte polynomial

Tr(x,y) :=
∑
A⊆E

(x− 1)r(E)−r(A)(y− 1)|A|−r(A).

Remark 2.3.1. TrG(x,y) = TG(x,y) for every graph G, and Tr∗(x,y) = Tr(y, x).

Example 2.3.2. For the two rank functions of Remark 2.2.10 we have

TrI(x,y) = x, TrL(x,y) = y.

Remark 2.3.3. If r and r ′ are isomorphic matroid rank functions, then Tr(x,y) =
Tr ′(x,y).

The deletion-contraction behaviour of Tutte polynomials of graphs that is
inherited from the dichromate generalizes to arbitrary matroids, as follows.
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Proposition 2.3.4. Let r ∈ ME be a matroid rank function and let e ∈ E. If e is
either a loop or an isthmus, Tr(x,y) = Tr[e](x,y)Tr\e(x,y). Otherwise,

Tr(x,y) = Tr\e(x,y) + Tr/e(x,y).

Proof. We leave this proof as an exercise.

Definition 2.3.5. Let K be a class of matroid( rank function)s that is closed
under minors. A Tutte-Grothendieck invariant on K is any function f defined
on K and with values in a commutative ring R, satisfying

(I) f(r) = f(r ′) whenever r and r ′ are isomorphic.

(II) f(r) = f(r\e) + f(r/e) if e is not a loop nor an isthmus.

(III) f(r) = f(r[e])f(r\e) if e is a loop or an isthmus.

Such an f is called a generalized (σ, τ) Tutte-Grothendieck invariant for some
σ, τ ∈ R if it satisfies (I) and (III) as well as the following variation of (II):

(II’) f(r) = σf(r\e) + τf(r/e) if e is not a loop nor an isthmus.

Example 2.3.6. The Tutte polynomial is a Tutte-Grothendieck invariant on any
minors-closed class of matroids.

Notation 2.3.7. In the following let K denote a class of matroids that is ob-
tained from a minor-closed class by removing the empty matroid (i.e., the one
with E = ∅).

Theorem 2.3.8. Let R be a commutative ring and let K be as in Notation 2.3.7.
Suppose that f : K → R is any function satisfying (I) always as well as (II) and (III)
whenever |E| > 2. Then, for all r ∈ K ,

f(r) = Tr(f(rI), f(rL)).

Proof. For every matroid r ∈ K , a finite number of applications of (II) and
(III) allows to decompose both sides of the claimed equality into the same
sum of terms associated to matroids with one element, i.e., with |E| = 1. But
in this case either r = rI or r = rL. The claim now follows with Example 2.3.2,
where we see that TrL(f(rI), f(rL)) = f(rL) and TrI(f(rI), f(rL)) = f(rI).

A similar argument proves the following universality result for generalized
Tutte-Grothendieck invariants.

Theorem 2.3.9. Let σ and τ be non-zero elements of a field F. Then there is a unique
(σ, τ)-generalized Tutte-Grothendieck invariant f on K with values in F[x,y] and
such that f(rI) = x, f(rL) = y. This f is given explicitly by

f(r) = σ|E|−r(E)τr(E)Tr(
x

τ
,
y

σ
). (2.3)
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Proof. One checks explicitly that the right-hand side of Equation (2.3) is indeed
a generalized (σ, τ) Tutte-Grothendieck invariant. I.e., for (II’) let e ∈ E be
neither an isthmus nor a loop, so that r(E) = r\e(E ′) = r/e(E ′) + 1, where we
write E ′ := E \ e. Then,

τ
[
σ|E

′|−r/e(E
′)τr/e(E

′)Tr/e(
x

τ
,
y

σ
)
]
+ σ

[
σ|E

′|−r\e(E
′)τr\e(E

′)Tr\e(
x

τ
,
y

σ
)
]

= τ
[
σ|E|−r(E)τr(E)−1Tr/e(

x

τ
,
y

σ
)
]
+ σ

[
σ|E|−r(E)−1τr(E)Tr\e(

x

τ
,
y

σ
)
]

= σ|E|−r(E)τr(E)
(
Tr/e(

x

τ
,
y

σ
) + Tr\e(

x

τ
,
y

σ
)
)
= σ|E|−r(E)τr(E)Tr(

x

τ
,
y

σ
)

We leave the verification of (III) as an exercise. The uniqueness part of the
claim follows as in the proof of Theorem 2.3.8.

Example 2.3.10. We have seen that, on the class K of nonempty graphic ma-
troids, the modular flow function is a (−1, 1)-generalized Tutte-Grothendieck
invariant, with value 0 on rI and value k− 1 on rL. The universality theorem
gives us then directly ϕ(t) = (−1)|E|−r(E)Tr(0, 1 − t), and thus the expression
in Theorem 1.3.13.

Exercises II

II.1 Compute the Tutte polynomial of the graph in Figure 9. Check your
computation against the results you obtained in Exercise I.5.

II.2 Show that the graphs in Figure 1 have the same Tutte polynomial but
that the associated matroids are not isomorphic (i.e., there is no bijection
between the edges of the two that preserves rank).

Figure 1

II.3 Let r be the rank function of a matroid on the set E and let A ⊆ E. Prove
that the dual of the contraction of A equals the deletion of A from the
dual (i.e., prove that (r/A)∗ = (r∗)\A).
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II.4 Prove Proposition 2.3.4.

II.5 In analogy with the case of graphs, define the characteristic polynomial of
a given matroid r as χr(t) := (−1)r(E)Tr(1 − t, 0).
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Chapter 3

Geometric lattices and
arrangements of hyperplanes

3.1 Arrangements of hyperplanes

Definition 3.1.1. Let V be vectorspace of finite dimension d. An arrangement
of hyperplanes in V is a finite set

A := {H1, . . . ,Hn}

of codimension 1 linear subspaces of V . The poset of intersections of A is the
set

L(A ) :=

{⋂
i∈I
Hi

∣∣∣∣∣ I ⊆ [n]

}
ordered by reverse inclusion: X 6 Y if and only if X ⊇ Y.

Example 3.1.2. Let A be the arrengement in R3 consisting of the four planes

α : {x = 0}, β : {y = 0}, γ : {x = y}, δ : {z = 0},

depicted in Figure 1. Then L(A ) is the poset represented on the r.h.s. of
Figure 1.

A classical question is the following: given an arrangement of hyperplanes
A in Rn, how many regions are cut out of Rn by A ?

In order to treat this question via the universality of Tutte polynomials, let
us set up some theory.

Definition 3.1.3. A partially ordered set P is a lattice if, for any two elements
p,q ∈ P,
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δ

β

α
γ

α β γ δ

{0}

R3

Figure 1

• the subposet P>p ∩ P>q of all upper bounds to p and q has a unique
minimal element - called join of p and q and denoted p∨ q, and

• the subposet P6p ∩ P6q of all lower bounds to p and q has a unique
maximal element - called meet of p and q and denoted p∧ q.

Notice that every finite lattice must have a unique minimal element (de-
noted by 0̂) and a unique maximal element (written 1̂).

Definition 3.1.4. Let P be a poset with a unique minimal element 0̂ (we call P
“bounded below”). Then the atoms of P are the elements of the set

A(P) := {p ∈ P | pm 0̂}.

Recall that every finite lattice has a unique minimal element.

Definition 3.1.5. Let L be a finite lattice. We call L geometric if, for all x,y ∈ L:

(G) xl y if and only if there is p ∈ A(L), p 66 x, such that y = x∨ p.

Example 3.1.6. Unique least upper bounds exist in L(A ) (for X, Y ∈ L(A ) take
X∨ Y := X ∩ Y). Moreover, since L(A ) is finite, this implies that also unique
greater lower bounds exist (take X∧ Y := ∨{Z ∈ L(A ) | Z 6 X,Z 6 Y}). Thus,
L(A ) is a finite lattice.

Now, the atoms of L(A ) are exactly the elements of A , i.e., the hyper-
planes. The other nontrivial elements of L(A ) are subspaces of V obtained as
intersections of the hyperplanes. Notice here that if W is any linear sub-
space and H is any hyperplane, the codimension of H ∩W either equals
that of W (namely if H ⊇ W) or else it surpasses it by one. Therefore, for
W1,W2 ∈ L(A ), we have W1 lW2 if and only if W2 = W1 ∩ H for some
H 6⊇ W1 (i.e., W2 = W1 ∨H for some H ∈ A(L(A )), H 66 W1). In summary,
we see that if A is an arrangement of hyperplanes, then L(A ) is a geometric
lattice.
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3.2 Matroids from geometric lattices

In what follows we will derive from the definition some properties of a ge-
ometric lattice that are “intuitively evident” for intersection posets of hyper-
plane arrangements. One of these properties is that intersection posets come
with a function that assigns to every intersection its codimension as a sub-
space of V , and this function increases exactly by one along every covering
relation. We say that intersection posets are ranked. More generally, we have
the following definition.

Definition 3.2.1. Let P be a poset. A rank function for P is a function ρ : P →N

such that

(i) ρ(x) = 0 if x is a minimal element in P,

(ii) ρ(x) + 1 = ρ(y) if xl y in P.

Remark 3.2.2. Notice that, if a bounded-below poset admits a rank function,
then this function is unique.

Before going forward, let us establish that the length of a chain ω = {x0 <

. . . < xk} in a partially ordered set P is `(ω) = |ω|− 1 = k. The length of the
poset `(P) then is the maximum length of any chain in P.

Lemma 3.2.3. In a geometric lattice any two maximal chains between the same ele-
ments have the same length.

Proof. Let L be a geometric lattice. We prove by induction the following state-
ment (note that in this proof, given a,b ∈ L, an (a,b)-chain is any chain in L
of the form a = x0 < x1 < . . . < xk = b).

(∗t) For all a,b ∈ L, if one maximal (a,b)-chain has length t, then all of them do.

The premise of (∗1) can only be satisfied if al b. In this case there is only
one maximal (a,b)-chain, hence (∗1) holds.

Then let t > 2 and suppose that (∗r) holds for all r < t. Consider two
maximal (a,b)-chains

a = c0 l c1 l . . . l ct = b a = d0 l d1 l . . . l ds = b.

Now, if c1 = d1, then by induction hypothesis all maximal (c1,b)-chains have
t− 1 elements, hence s = t and we are done.
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Suppose then c1 6= d1. By property (G) we can
find x,y ∈ A(L) with c1 = a∨ x, d1 = a∨ y. If
x 6 d1 (resp. y 6 c1) we would have c1 6 d1
(resp. d1 6 c1), reaching a contradiction; hence,
x 66 d1 (resp. y 66 c1). Again by (G), we compute
c1 ∨ d1 = a∨ x∨ ym d1, c1.
Now, by induction hypothesis applied to (c1,b),
every maximal (c1,b)-chain has length t− 1, and
in particular every maximal (c1 ∨ d1,b)-chain has
length t−2. In the same way, induction hypothesis
applied to (d1,b) gives that every (c1 ∨d1,b)-chain
has length s− 2. We conclude s = t, and (∗t) holds.

Corollary 3.2.4. Every geometric lattice admits a rank function.

Proof. Given a geometric lattice L a rank function is given by choosing, for
every x ∈ L,

ρ(x) := length of any maximal chain from 0̂ to x. (3.1)

Lemma Lemma 3.2.3 ensures that this is well-defined, and one readily checks
that the conditions of Definition 3.2.1 are satisfied.

Corollary 3.2.5. Let L be a geometric lattice with rank function ρ. For every X ⊆
A(L) we have ρ(∨X) 6 #X.

Proof. First notice that by uniqueness of the rank function we know that ρ can
be expressed as in Equation (3.1). Induction on the cardinality of X. If X = ∅,
ρ(∨X) = ρ(0̂) = 0 and the claim holds.

If #X > 0, choose x ∈ X and notice that either ∨(X \ {x}) = ∨X (when
x 6 ∨(X \ {x})) or, by (G), ∨(X \ {x})l∨X. In any case, a maximal chain from 0̂
to ∨X can be obtained by adding at most one new element to a maximal chain
from 0̂ to ∨(X \ {x}). Therefore, ρ(∨X) 6 ρ(∨(X \ {x})) + 1 and by induction
hypothesis this is at most #X.

Lemma 3.2.6. Let L be a geometric lattice and ρ its1 rank function. Then, for all
x,y ∈ L,

ρ(x) + ρ(y) > ρ(x∧ y) + ρ(x∨ y).

Proof. Consider z := x∧ y and any saturated chain z = z0 l z1,lz2,l · · ·l
zk = y. Then,

k = ρ(y) − ρ(x∧ y). (3.2)

By (G) we can choose atoms a1, . . . ,ak so that ai 6 zi, ai 66 zi−1 and zi =

zi−1 ∨ ai for all i = 1, . . . ,k.

1Unique by Remark 3.2.2
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Define now elements w0, . . . ,wk by setting w0 = x and wi := wi−1 ∨ ai
for all i > 1. Notice that wk = x∨a1 ∨ . . .∨ak = x∨ z∨a1 ∨ . . .∨ak = x∨y.

Then, by (G) we have either wi = wi−1 or wi−1 lwi for all i, so that
k > ρ(wk) − ρ(w0) = ρ(x∨ y) − ρ(x) and the claim follows by recalling Equa-
tion (3.2).

We have proved the following.

Proposition 3.2.7. Let E be a finite set and let L ⊆ 2E a family of subsets of E,
partially ordered by inclusion and such that E ∈ L. Suppose further that L is a
geometric lattice with rank function ρ.

Then for every X ⊆ E there is a unique minimal X ′ in L such that X ⊆ X ′, and
the extension r of ρ on 2E given by r(X) := ρ(X ′) is a matroid rank function.

Proof. Axiom (r1) is trivially satisfied. For Axiom (r0) notice first that ρ is
never negative by definition. Moreover, given X ⊆ E we can consider the
family A1, . . . ,Ak of all atoms of L whose intersection with X is not contained
in the minimal element B of L. Then surely k < |X|, and

X ⊆ B∪
⋃
i

Ai =
⋃
i

Ai,

the second equality because B ⊆ Ai for all i. In particular, we have X ′ 6
∨
iAi

in L, and by Corollary 3.2.5 ρ(
∨
iAi) 6 k. Thus r(X) = ρ(X ′) 6 k 6 |X| as

desired.
We now turn to Axiom (r2). First notice that, trivially, X ′ ∧ Y ′ > (X ∩ Y) ′.

By definition, X ′∨ Y ′ is the minimal element of L containing X ′ and Y ′, while
(X ∪ Y) ′ is the minimal element of L containing X and Y. Since X ⊆ X ′ and
Y ⊆ Y ′, we have X ′ ∨ Y ′ > (X ∪ Y) ′. With the trivial inequality X ′ ∨ Y ′ 6
(X∪ Y) ′ we obtain X ′ ∨ Y ′ = (X∪ Y) ′.

Now using Lemma 3.2.6 and the monotony of ρ we can write

r(X) + r(Y)
df
= ρ(X ′) + ρ(Y ′)

> ρ(X ′ ∧ Y ′) + ρ(X ′ ∨ Y ′) > ρ((X∩ Y) ′) + ρ((X∪ Y) ′)
df
= r(X∩ Y) + r(X∪ Y)

Corollary 3.2.8. Given any (abstract) geometric semilattice L, we can associate to
every x ∈ L the set A(x) of all atoms of L below x. Then, L is isomorphic to the set
L ′ := {A(x) | x ∈ L} ordered by inclusion (since x < y if and only if A(x) ⊂ A(y)).
The matroid constructed from the proposition, then, has the set A(L) of all atoms as a
ground set and rank function given by r(X) = ρ(∨X) for all X ⊆ A(L). This matroid
has no loops, and it is referred to as the "simple matroid associated to L.
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Example 3.2.9. Let us consider the geometric lattice from Figure 1. The set of
atoms is {α,β,γ, δ}, and the associated geometric lattice L ′ in Corollary 3.2.8
is as follows.

{α} {β} {γ} {δ}

{α,β,γ} {α, δ} {β, δ} {γ, δ}

{α,β,γ, δ}

∅
The claim of Corollary 3.2.8 is then that this is the lattice of flats of a

matroid on E = {α,β,γ, δ} with rank function given by r(A) = |A| if |A| 6 2,
r({α,β,γ}) = 2, and r(A) = 3 for all A with A 6= {α,β,γ} and |A| > 3.

3.3 Geometric lattices from matroids

We aim at a “converse” of Proposition 3.2.7, constructing a geometric lattice
for every given matroid.

Definition 3.3.1. Let E be a finite set and r : 2E →N a matroid rank function.
Define a closure operator

cl : 2E → 2E, X 7→ {e ∈ E | r(X∪ e) = r(X)}.

Call X ⊆ E closed if X = cl(X), and let Lr be the poset of all closed sets ordered
by inclusion (i.e., for F, F ′ ∈ Lr we have F 6 F ′ if F ⊆ F ′).

Example 3.3.2.

Example 3.3.3. Consider the rank function r : 2[4] → N defined by r(X) = 1
if |X| 6 1 and r(X) = 2 otherwise. One can check that this is a matroid rank
function – it is called “uniform of rank 2 on 4 elements”. The associated poset of
flats is depicted below.
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[4]

1 2 3 4

∅

Our next goal is to prove that, in general, Lr is a geometric lattice.

Remark 3.3.4.

(1) For all X ⊆ E we have obviously X ⊆ cl(X).

(2) For all X ⊆ E, r(cl(X)) = r(X).
Proof. Let Y := cl(X) \ X. We prove that r(X ∪ Y ′) = r(X) for all Y ′ ⊆ Y,
by induction on k := |Y ′|.
The case k = 1 holds by definition of “y ∈ cl(X)”.
For k > 1, assume that the claim holds for smaller sizes of Y ′, and choose
y1,y2 ∈ Y ′. Then

2r(X) I.H.
= r((X∪ Y ′) \ {y1}) + r((X∪ Y ′) \ {y2})

r3
> r(X∪ Y ′) + r(X∪ Y ′ \ {y1,y2})

r2
> r(X) + r(X)

and equality must hold throughout. Thus, r(X) = r(X∪ Y ′).

(3) For all X ⊆ E, cl(X) = max⊆{Y ⊇ X | r(Y) = r(X)}.
Proof. Let Γ := {Y ⊇ X | r(X) = r(Y)}. By (1) and (2) above we have
cl(X) ∈ Γ . It is now enough to prove that Y ⊆ cl(X) for all Y ∈ Γ .

To this end, take Y ∈ Γ and, for any y ∈ Y compute r(X) 6 r(X ∪ {y}) 6
r(Y) = r(X) (the last equality because Y ∈ Γ ), hence r(X ∪ {y}) = r(X),
thus y ∈ cl(X). We conclude Y ⊆ cl(X) as desired.

(4) For all X ⊆ Y ⊆ E, cl(X) ⊆ cl(Y).
Proof. Clear from (3).

Lemma 3.3.5. Let r be a matroid rank function. Then, meet and join of every F1, F2 ∈
Lr exist. In fact,

(1) F1 ∨ F2 = cl(F1 ∪ F2)

(2) F1 ∧ F2 = F1 ∩ F2

In particular, Lr is a lattice.

Proof.
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(1) By definition of the ordering, every element of (Lr)>F1 ∩ (Lr)>F2 must
contain F1 ∪ F2. But by the definition of the closure operator, cl(F1 ∪ F2)

is the (unique) smallest closed set containing F1 ∪ F2.

(2) It is enough to prove that F1 ∩ F2 is closed, i.e., that cl(F1 ∩ F2) = F1 ∩ F2.
We do this next.

⊇ This inclusion is clear (see Remark 3.3.4.(1)).

⊆ For every e ∈ cl(F1 ∩ F2) we have r((F1 ∩ F2) ∪ {e}) = r(F1 ∩ F2).
Hence:

r((F1 ∩ F2)∪ {e})︸ ︷︷ ︸
=r(F1∩F2)

+r(F1)
(r3)
> r(F1 ∪ {e}) + r (F1 ∩ F2 or (F1 ∩ F2)∪ {e})

= r(F1 ∪ {e}) + r(F1 ∩ F2)

and we conclude r(F1) = r(F1 ∪ {e}), hence e ∈ F1.
Analogously we prove e ∈ F2, hence e ∈ F1 ∩ F2.

Remark 3.3.6. If X < Y in Lr, then r(X) < r(Y). Otherwise, by r2 we would
have r(X) = r(Y) and by definition of closure Y ⊆ cl(X) = X, proving X = Y.

Proposition 3.3.7. For any F1, F2 ∈ Lr, (G) holds. I.e.,

F1 l F2 ⇔ ∃P ∈ A(Lr), P 66 F1, s.t. F2 = F1 ∨ P.

Proof.

⇐ Let P be as in the claim. Since P is an atom, P = cl({e}) for some element
e ∈ E and, since P 66 F1, by Remark 3.3.4.(4) it must be e ∈ E \ F1. Now
we can write F2 using Lemma 3.3.5 as

F2 = F1 ∨ P = cl(F1 ∪ P) = cl(F1 ∪ {e})

and we have
r(F1) + r({e}) > r(∅) + r(F1 ∪ {e}).

Now, r({e}) = r(cl(e)) and since P = cl(e) has rank 1, r(e) = 1. Thus

r(F2) = r(F∪ {e}) 6 r(F1) + 1

Moreover, since F1 is closed and e 6∈ F1 we have r(F1 ∪ {e}) > r(F1), and
we conclude that r(F2) = r(F1) + 1.

Now by Remark 3.3.6 any Z ∈ Lr, F1 < Z < F2, would force r(F2) >
r(F1) + 2, hence a contradiction. We conclude F1 l F2.
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⇒ F1 l F2 implies F1 ( F2 and so we can choose e ∈ F2 \ F1. Then r({e}) = 1
since otherwise e is in the closure of every flat, in particular we would
have e ∈ F1. It follows that P := cl({e}) is an atom of Lr, and P 6 F2 by
Remark 3.3.4.(1). Now define

F := F1 ∨ P = cl(F1 ∪ {e}).

Then the following claim concludes the proof.

Claim. F2 = F.

Proof. We have
r(F) > r(F1) + 1 = r(F2). (3.3)

The inequality holds since F ⊇ F1 ∪ {e}, F1 is closed and e 6∈ F1, the
equality is immediate since F1 l F2.
Now since F1 ∪ {e} ⊆ F2 Remark 3.3.4.(1) implies F ⊆ F2. Together
with Equation (3.3) this shows F = F2.

Theorem 3.3.8. Let r be any matroid rank function. Then the poset Lr is a geometric
lattice whose rank function ρ satisfies ρ(F) = r(F) for every F ∈ Lr.

Proof. That Lr is a geometric lattice follows from Lemma 3.3.5 and Proposi-
tion 3.3.7. For the claim about rank consider any F ∈ Lr and let 0̂ l F1 l . . . l
Fk = F be a maximal chain below F. Then, ρ(F) = k.

Choose atoms A1, . . . ,Ak with Fi = Fi−1 ∨Ai for all i. Since every Fi−1 is
closed and Ai 6⊆ Fi−1, we must have

r(Fi−1) > r(Fi−1 ∪Ai) = r(Fi) (3.4)

(the last equality by Lemma 3.3.5.(1)). On the other hand, (r2) implies

r(Fi−1) + r(Ai) > r(Fi−1 ∩Ai︸ ︷︷ ︸
=0̂

) + r(Fi−1 ∪Ai) = r(Fi) (3.5)

and since r(Ai) = 1 from Equations (3.4) and (3.5) we conclude r(Fi) =

r(Fi−1) + 1, thus r(X) = r(Fk) = k = ρ(X).
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3.4 Interlude: Arrangements

At this stage we have two, a priori different, rank functions associated to an
arrangement A = {H1, . . . ,Hm} of hyperplanes:

• The rank function rlat of the simple matroid associated to the geometric
lattice L(A ) as in Corollary 3.2.8:

rlat : 2[m] →N, I 7→ ρ

(∨
i∈I
Hi

)

• The rank function rdep obtained via Theorem 2.2.15 from the [n]-tuple
of vectors {n1, . . . ,nm}, where ni is any choice of normal vector for the
hyperplane Hi:

rdep : 2[m] →N, I 7→ dim span{vi | i ∈ I}.

Our next goal is to show that they are the same.

Lemma 3.4.1. For every intersection X ∈ L(A ) we have ρ(X) = codimX

Proof. By definition ρ(X) = k means that k is the length of a maximal chain
0̂ l X1 l · · · l Xk = X. Now consider the subspaces Xi. By property (G),
every Xi is of the form Xi−1 ∩Hi for some atom Hi of L(A ) (i.e., hyperplane
in A ) with Hi 66 Xi−1 (i.e., Hi 6⊇ Xi−1). Notice that the latter implies that
Xi−1 +Hi = Rd, the ambient space. Now, elementary linear algebra tells us
that

dim(Xi−1 ∩Hi︸ ︷︷ ︸
=Xi

) + dim(Xi−1 +Hi)︸ ︷︷ ︸
=d

= dim(Xi−1) + dim(Hi)︸ ︷︷ ︸
d−1

and thus dim(Xi) = dim(Xi−1) − 1. Therefore, X has dimension k less than
0̂ = Rd, and the proof is complete.

Proposition 3.4.2.
rlat ≡ rdep.

Proof. Let I ⊆ [m] and write X :=
∨
i∈IHi =

⋂
i∈IHi Then, with Lemma 3.4.1

we know that rlat(I) = ρ(X) = codim(X). On the other hand, rdep(I) equals
the rank of the d× |I| matrix M whose columns are vi for i in I. Now, X is the
subspace of all points that are orthogonal to each vi, i ∈ I, and therefore X =

kerM. Now, again by elementary linear algebra we know that dim kerM =

d− rankM. We summarize and conclude

rdep(I) = rankM = d− dim kerM = d− dimX = codim(X) = rlat(I)
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3.5 Minors

Proposition 3.5.1. Let r be the rank function of a matroid on E and let e ∈ E.
Call cl, cl\e, cl/e the closure operators associated to r, its deletion and contraction
respectively. Then, for every A ⊆ E \ e we have

(1) cl\e(A) = cl(A) \ {e}

(2) cl/e(A) = cl(A∪ {e}) \ {e}

Proof. For item (1) we have that cl\e(A) is the set of all x ∈ E \ e such that
r\e(A∪ x) = r\e(A). The claim follows by noticing that r\e = r on E \ e.

For item (2) notice that cl/e(A) is the set of all x ∈ E \ e such that r/e(A ∪
x) = r/e(A), i.e., such that r(A ∪ x ∪ e) − r(e) = r(A ∪ e) − r(e). This equality
clearly holds if and only if x ∈ cl(A∪ e). Since x 6= e, claim (2) is proved.

Theorem 3.5.2. Let r be the rank function of a matroid on the ground set E and let
e ∈ E. Then, Lr\e is the sublattice of Lr generated by the joins of all x ∈ E \ e, and
Lr/e ' (Lr)>cl(e).

Proof. Exercise.

3.6 Dissection theory

Let A be an arrangement of hyperplanes in Rd and let L(A ) be the associated
geometric lattice of intersections. If we denote by rA the rank function of the
matroid defined by L(A ) (or, equivalently, by the dependency relations of the
normal vectors), we obtain a function

r : Arr→ Mat, A 7→ rA

from arrangements to matroids.
Now call R(A ) the set of chambers of A (so R(A ) = π0(R

d \ ∪A )). Our
aim will be to apply matroid theory and the universality of the Tutte polyno-
mial in order to give a formula for computing |R(A )|.

For any given H ∈ A consider AH := A \ {H} and A H := {H ′ ∩ H |

H ′ ∈ AH}. We see that the regions of A H are “walls” that bisect some of
the chambers of AH. In fact, for every chamber of AH that is subdivided in
passing to A there is exactly one chamber of A H that performs this "cut". We
have shown that

|R(A )| = |R(A H)|+ |R(AH)|. (3.6)

.
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Lemma 3.6.1.

(1) L(AH) is the sublattice of L(A ) generated by the set of atoms A \ {H}.

(2) L(A H) ' L(A )>H.

Proof. Exercise.

Now notice that A = {H} if and only if Lr = {0̂ < 1̂} , and in that case
|R(A )| = 2 – in particular, this number only depends on the isomorphism
type of Lr. With Equation (3.6) and Lemma 3.6.1 we see that this then is true
also for bigger arrangements. Thus, we can write

|R(A )| = f(rA )

where f : Mat → Z is a function that is constant on every set of matroids
that share the same lattice of flats and that satisfies the deletion-contraction
recursion

f(r) = f(r/e) + f(r\e) (3.7)

Lemma 3.6.2. Let f : Mat→ Z be a function that is constant on every set of matroids
that share the same lattice of flats and satisfies Equation (3.7). Then, f(rL) = 0.

Proof. Let r be the rank function of the matroid on E = {a,b} with r({a}) =

r({b}) = r({a,b}) = 1. Its flats are ∅ and E, and so its lattice of flats is isomor-
phic to that of rI. Moreover, r/a = rL, and r\a = rI. Now Equation (3.7) gives
f(rI) = f(rI) + f(rL), implying f(rL) = 0 as desired.

Thus, our f satisfies the definition of a Tutte-Grothendieck invariant in
Z (for item (III) in Definition 2.3.5 notice Exercise III.2 and recall that that
f(rI) = 2), with f(rL) = 0 and f(rI) = 2. We conclude immediately that

|R(A )| = TrA (2, 0).

3.6.1 An example: graphic arrangements

Let G be a loopless graph with edge-set E and set of vertices V . To G is
associated an arrangement AG in RV with one hyperplane He for each e ∈ E,
defined via its normal vector ne that we choose as

ne = (0, . . . , 0, 1, 0, . . . , 0,−1, 0, . . . , 0) (3.8)

with nonzero value at entries v and w, where {v,w} = {h(e), t(e)}. Notice that,
identifying edges of the graph with hyperplanes of the arrangement, the rank
function of the graphic matroid derived from G is the same as that derived
from the (lattice of flats of the) arrangement.
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Recall further that, associated to a graph, we have a chromatic polynomial

χG(t) = (−1)r(G)tc(G)TG(1 − t, 0)

where TG(x,y) is the Tutte polynomial of the (matroid associated to the) graph
G.

By our considerations above, we have that the number of regions of AG is
|χG(−1)|. This allows us to easily compute the number of regions of certain
classes of such “graphic arrangements”. For instance, take G = Kn, the com-
plete graph on n vertices. The chromatic polynomial of Kn is easy to compute,
and so is the number of regions of the arrangement:

χKn(t) = t(t− 1)(t− 2) . . . (t−n+ 1), |R(AKn)| = |χKn(−1)| = n!

You might recall from Coxeter theory that this is no coincidence – in fact,
AKn is the set of reflecting hyperplanes of the standard linear representation
of the symmetric group (or: Coxeter group of type An−1), and the chambers
are in bijection with the elements of the group... of which there are exactly n!.

Question. Can we treat in the same way the other finite Coxeter types?

Exercises III

III.1 Let r be the rank function of a matroid on E and suppose that e is a loop
of this matroid. Prove that e is contained in every flat.

III.2 Let r be the rank function of a matroid on E and suppose that e is an
isthmus of this matroid. Prove that the lattice of flats of r/e and r\e are
isomorphic.

III.3 Let d,n ∈ N, d 6 n. The uniform matroid Um,d of rank d on n elements
has ground set [n] and rank function defined by

r(A) =

{
|A| if |A| 6 d
d otherwise

Prove that the dual to Un,d is Un,n−d.

III.4 Let A be the arrangement of four hyperplanes H1,H2,H3,H4 in R2 with
equations:

H1 : x+ y = 0,H2 : x = 0,H3 : y = 0,H4 : x− y = 0

Draw a picture of this arrangement and of the Hasse diagram of L(A ).
Compute the Tutte polynomial of the associated matroid and verify the
formula for the number of regions of A in this case.
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III.5 Consider the graph

Draw the Hasse diagram of the lattice of flats of the associated matroid.
Compute the Tutte polynomial and the number of regions of the associ-
ated graphic arrangement. Check it with a sketch of the arrangement (it
is an arrangement in R4, but all hyperplanes contain the line ` in direc-
tion (1, 1, 1), thus by quotienting by ` one can attempt a 3-dimensional
sketch.

III.6 Let L be a finite geometric lattice. The Möbius function of L is the func-
tion µ : L→N defined via the following recursion:

µ(0̂) = 1, and
∑
y6x

µ(y) = 0 for all x ∈ L
>0̂.

• Compute µ for the geometric lattice L in Example 3.1.2 and find an
interpretation of the sum

∑
x∈L |µ(x)| in this case.

• Compute the values of µ for the poset of Example 3.3.2 and consider
the numbers you obtain by summing those values over every rank-
level of the poset. Then compute the chromatic polynomial of the
graph of the same example. What do you notice?

• Let now L be any geometric lattice. Prove that, for all x ∈ L,

µ(x) =
∑

S⊆A(L)
∨S=x

(−1)|S|

where the sum is over all sets S of atoms of L whose join equals x.
(Hint: prove that µ(x) and the expression on the r.-h.s. satisfy the
same recursion).

• Let r be the rank function of a matroid with ground set E that has
no loops. Show that

Tr(1 − t, 0) = (−1)r(E)
∑
F∈Lr

µ(F)tr(E)−r(F).

[Hint: use the previous item in this exercise.]

• Prove that, for every arrangement of hyperplanes A , the number
of regions determined by A equals

∑
x∈L(A ) |µ(x)|.
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• Prove that for every graph G on n vertices the chromatic polyno-
mial of G equals

χG(t) = (−1)r(G)tc(G)
r(G)∑
i=0

µi(LrG)t
i

where for a geometric lattice L with rank function ρ we write
µi(L) =

∑
ρ(x)=i µ(x) for the sum of the values of µ on all ele-

ments of L of rank i.
Check this formula with the lattice of Exercise III.5.
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Chapter 4

Signed graphs

4.1 Definition

A loopless signed graph is, roughly speaking, a graph with two kinds of edges
(“standard” and “half-” edges) and a “sign” associated to every edge.

Formally we will think of a tuple

Σ = (G,σ), G = (V ,E,h : E→ V , t : Er → V), σ : Er → {±}

where Er ⊆ E is the set of all “regular” edges, while E1/2 := E \ Er is the set
of half-edges. We will only need to consider loopless graphs, thus we assume
|V(e)| = 2 for all e ∈ Er.

Note that σ labels every edge with a sign + or −. Therefore every trail has
a sign as well, obtained as the product of the signs of all its edges. A circuit is
called balanced if its sign +, unbalanced otherwise. A connected component of
a signed graph is called balanced if every circuit in it is balanced, unbalanced
otherwise. For every A ⊆ E we call b(A) the number of balanced connected
components of the restriction of the signed graph on the set A (as in the un-
signed case, this is the graph with same vertex set V but only the edges in
A).

Remark 4.1.1. In particular, any cycle in a balanced component of a signed
graph has positive sign. This is easy to see by noticing that a cycle decomposes
as a disjoint union of circuits (each with positive sign) and "repeated" edges
(and the product of two negatives is a positive).

Lemma 4.1.2. Let p1, p2 be two paths with the same endpoints in a balanced com-
ponent of a signed graph. Then the product of the signs of the edges of p1 equals the
product of the signs of the edges of p2.

Proof. The sign of the union of p1 and p2 is by definition the product of the
signs of the two paths. But this union is a cycle which must have positive sign
by the preceding remark. The claim follows.
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4.2 Coloring

Let k ∈N and let [[k]] := {−k,−k+ 1, . . . , 0, 1, . . . ,k}. A k-coloring of a loopless
signed graph Σ is an assignment γ : V → [[k]] such that:

(i) γ(h(e)) 6= σ(e)γ(t(e)) for all e ∈ Er,

(ii) γ(h(e)) 6= 0 for all e ∈ E1/2.

As in the case of unsigned graphs, we call precoloring any function V → [[k]]

and, given any A ⊆ E, we define the set of precoloring which fail to satisfy
the constraints imposed by the edges in A:

PreΣ(A) :=
{
γ : V → [[k]]

∣∣∣∣ γ(h(e)) = σ(e)γ(t(e)) for e ∈ A∩ Er,
γ(h(e)) = 0 for e ∈ E1/2 ∩A

}
Then any γ ∈ PreΣ(A) must have constant value across every connected

component of G[A]. Moreover, notice that every unbalanced component of
G[A] must contain an unbalanced cycle, say with sequence of edges-vertices
v0, e1, v1 . . . , em, vm = v0, and we have

γ(v0) = σ(e1)γ(v1) = . . . = σ(e1) · · ·σ(em)γ(vm) = −γ(v0),

the last equality because vm = v0 and the cycle is unbalanced. In particular,
γ(v0) = 0 and thus γ must be 0 across every unbalanced component of A.

Since the (constant) value of γ on any balanced connected component of
G[A] can be chosen freely, we conclude that

|PreΣ(A)| = (2k+ 1)b(A).

Just as in the case of unsigned graphs, applying inclusion-exclusion on the
family of all subsets of E we obtain that the function χΣ(t) that for odd t

counts the number of (t−1)
2 -colorings of Σ can be written

χΣ(t) =
∑
A⊆E

(−1)|A|tb(A)

and is therefore a polynomial.

Coup de théâtre: we’ll show next that this is in fact, up to a factor, the charac-
teristic polynomial of a matroid!

4.3 Matroids

Definition 4.3.1. Let Σ be a (loopless) signed graph on n vertices. Define a
function

rΣ : 2E →N, A 7→ rΣ(A) := n− b(A)
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Theorem 4.3.2. The function rΣ is the rank function of a matroid on E.

Proof. We will verify the rank axioms, but first a general observation.

G.O. When adding an edge to a signed graph Σ, the number of balanced com-
ponents can drop in two ways: either ome balanced component becomes
unbalanced (i.e., by adding a half-edge, by adding an edge that creates
an unbalanced cycle or by joining a balanced component with an unbal-
anced one) or two balanced components are joined via the new edge to
one bigger balanced component . In any case the number of balanced
components either stays the same or it decreases at most by one, i.e,

rΣ(A) 6 rΣ(A∪ {e}) 6 rΣ(A) + 1. (4.1)

r0 Clearly rΣ is never negative. In order to prove that rΣ(A) 6 |A| for all
A ⊆ E, start with the graph Σ0 on V and with no edges: here every
vertex is its own (balanced!) component. Therefore rΣ(∅) = n− n = 0.
Now add the edges in A to Σ0 one by one. By the G.O., the number
of balanced components decreases at most by one at each step, thus
the rank increases at most by one at each step (second inequality in
Equation (4.1)). Thus, rΣ(A) 6 |A| as required.

r1 Obviously it is enough to show that rΣ(A) 6 rΣ(A ∪ {e}) for all A ⊆ E
and all e. But this is implied directly from the G.O. above (first inequality
of Equation (4.1)).

r2 Here it is enough to show axiom r2 for the case where X = A ∪ {e} and
Y = A ∪ {f}, for any given A ⊆ E and e, f ∈ E (see Exercise IV.1). In this
case we have to show

rΣ(A∪ {e, f}) − rΣ(A∪ {f}) 6 rΣ(A∪ {e}) − rΣ(A).

Now, if the right-hand side equals 1 then the inequality holds trivially,
since by (r1) the left-hand side is at most 1.

Suppose then that rΣ(A ∪ {e}) = rΣ(A) – in particular, if e has one end
in a balanced component, then it must be a regular edge with both ends
in the same balanced component of A. By way of contradiction, suppose
now that rΣ(A∪ {e, f}) − rΣ(A∪ {f}) = 1. The latter means that the num-
ber of balanced components changes by adding e to A∪ {f}. By the G.O.,
this means that either

(1) e connects two balanced components of A ∪ {f} – a contradiction
because both ends of e are in the same component of A, and a
fortiori of A∪ f, or

(2) e “closes” an unbalanced circuit C in a balanced component of
A ∪ {f}. But this can only happen if C also contains f. Now, if f
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connects two balanced components of A, then e would, too – a con-
tradiction. So the two ends of f lie in the same balanced component
of A and (by the connectedness of this component) are connected
by a path p whose sign agrees with that of f (by Lemma 4.1.2).
Now we can replace f by p in C and obtain a closed, unbalanced
cycle containing e in A ∪ e, thus e “closes” an unbalanced cycle in
a balanced component of Σ[A], contradicting the assumption.

In all possible cases we reached a contradiction and the desired inequal-
ity is proved.

4.4 Arrangements from signed graphs

We now show that the matroid defined by rΣ is in fact obtainable as the
matroid of linear dependencies of a set of vectors.

Definition 4.4.1. Let Σ be a loopless signed graph on the vertex set V with set
of edges E. For each edge e ∈ E define a vector me ∈ RV as follows:

(me)v :=


1 if v = h(e)
σ(e)(−1) if v = t(e)
0 otherwise.

In particular, if e ∈ E1/2 the vector me has only one nonzero component.
Let MΣ the V × E matrix with columns me and, for every A ⊆ E, let MΣ[A]
denote the matrix constructed with only the columns indexed by A.

The following theorem states that rΣ is the rank function of the matroid
obtained as in Theorem 2.2.15 from the vectors me where e ranges over E.

Theorem 4.4.2. For every A ⊆ E, rΣ(A) = rankMΣ[A].

The proof will use the following lemma.

Lemma 4.4.3. Let Σ be a connected signed graph on n vertices. Then rankMΣ =

n− 1 if Σ is balanced, and rankMΣ = n otherwise.

Proof. Let T be a set of regular (non-half) edges that is a spanning tree of Σ.
We can suppose without loss of generality that, if Σ has half-edges, then one
half-edge is attached to a leaf v0 of T . Then T has size n− 1 and we can order
the vertices of Σ beginning with v0, and continuing in such a way that, for all
i, the subgraph of T induced by the vertices v0, . . . , vi is connected. Then the
matrix MΣ with the rows ordered this way can be written as follows (where
the first row is only present in case v0 has a half-edges attached to it)
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

(1) ∓1 ∗ ∗ · · · ∗ ∗ · · · ∗
(0) ±1 ∗ ∗ ∗
(0) 0 ±1 ∗ ∗ ∗
(0) 0 0 ±1

. . . ∗ ∗
...

...
. . . . . . ∗ ∗

(0) 0 · · · 0 ±1 ∗ · · · ∗


and it has clearly rank at least n − 1. Since MΣ has n rows, its rank is

at most n. Now, it is enough to show the following, which we leave as an
exercise.

• If Σ is balanced, then the parenthesized column is not present and every
me, for e 6∈ T , is a linear combination of the set {mt | t ∈ T }. (Hint: for
every such e consider the (unique) circuit contained in T ∪ {e}.

• If Σ is not balanced, then either it has an half-edge, in which case the
parenthesized column is present and so the matix has rank n, or there
is no half-edge. In this last case, there is an e ∈ E \ T that is linearly
independent from {mt | t ∈ T }.

Proof of Theorem 4.4.2. First notice that MΣ[A] is the matrix associated to the
restriction of Σ to the edge-set A. Therefore, it is enough to prove the claim
for A = E, i.e., we have to prove that rankMΣ = rΣ(E). Moreover, if Σ is
disconnected we can let V1, . . . ,Vk and A1, . . . ,Ak be the vertex sets, resp. the
edge sets of the connected components, and we see that the matrix MΣ has
block-diagonal form


A1 A2 ··· Ak

V1 MΣ1 0 0 0
V2 0 MΣ2 0 0
... 0 0

. . . 0
Vk 0 0 0 MΣk


showing that rankMΣ =

∑
i rankMΣi where Σi is the signed graph on

the vertex set Vi with (signed) edges Ai. On the other hand, writing ni = |Vi|

and setting bi = 1 if Σi is balanced and bi = 0 otherwise, we have that∑
i

rΣi(Ai) =
∑
i

(ni − b(Ai)) =
∑
i

(ni − bi) = n− b(E) = rΣ(E).

Therefore, it is enough to prove the claim for Σ connected. This has been done
precisely in Lemma 4.4.3.
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The Tutte polynomial of the matroid rΣ is of course related to the chro-
matic polynomial χΣ.

Lemma 4.4.4. Let Σ be a loopless signed graph. Then

χΣ(t) = (−1)ntb(E)TrΣ(1 − t, 0)

Proof. Direct computation:

TrΣ(1 − t, 0) =
∑
A⊆E

(−t)(n−b(E))−(n−b(A))(−1)|A|−(n−b(A))

= (−1)nt−b(E)
∑
A⊆E

(−1)|A|tb(A)

4.5 Arrangements associated to root systems

For every fixed dimension d there are only a finite number of finite (irre-
ducible) groups of isometries of Rd generated by reflections. Those are the
(irreducible) finite Coxeter groups, and their theory is a mainstay of algebra
and geometry since its bases were laid by H.S.M. Coxeter1 in the mid- 20.
Century.

The classification of (irreducible) finite Coxeter groups identifies in ev-
ery dimension one representative of each of four infinite families (indexed
by An, Bn, Cn, Dn) and, in some (low) dimensions, a finite number of
sporadic cases. One way to specify one of these groups, say G, is to give
all isometries f ∈ G that are reflections2 - by definition, these generate the
group G. Now, a (orthogonal) reflection f is fully specified by its fixed space
fix(f) = {x ∈ Rd | f(x) = x}. Note that if f is a reflection, then fix(f) is a
hyperplane in Rd. Therefore, G is given by the associated “arrangement of
reflection hyperplanes". The arrangements that arise this way are explicitly
listed, e.g., by means of a choice of their normal vectors. The set of normal
vectors is usually referred to as the set of (positive) roots of the corresponding
Coxeter group3. (The word “positive” is there because root systems contain
the opposite of each root, but opposite vectors define the same hyperplane.)
Notice that the group acts freely and transitively on the set of regions of the
corresponding arrangement, so there are as many regions as there are group
elements.

We list here a set of normal vectors for the hyperplane arrangements of the
four infinite families. We use the notation εi to denote the i-th standard basis

1https://en.wikipedia.org/wiki/Harold_Scott_MacDonald_Coxeter
2A reflection
3See for instance Bourbaki
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vector in Rn, so εi has all components equal to 0 except the i-th component
being equal to 1.

An−1
4: The vectors εi − εj in Rn for n > i > j > 1

Bn: The vectors εi − εj as well as εi + εj and εi in Rn for n > i > j > 1

Cn: The vectors εi−εj as well as εi+εj and 2εi in Rn for n > i > j > 1

Dn: The vectors εi − εj and εi + εj in Rn for n > i > j > 1

We first notice that the arrangement of type B and C are equal (since εi
and 2εi define the same hyperplane). Then, we notice that the set of vectors
in types A,B,D can be obtained as vectors of the type me for edges of suit-
able signed graphs, that we will call Σ(An−1), Σ(Bn), Σ(Dn) and we describe
below.

Σ(An−1) is the graph K+
n obtained from the complete graph on n vertices by

assigning a positive sign to each vertex.

Σ(Bn) is the graph on n vertices with a pair of opposite-signed edges be-
tween every pair of vertices, and a half-edge at every vertex.

Σ(Dn) is the graph on n vertices with a pair of opposite-signed edges be-
tween every pair of vertices.

Now the number of regions in each such arrangement is, by the general
principle, given by the Tutte polynomial of the associated matroid rΣ – and,
by Lemma 4.4.4 as

TrΣ(2, 0) = (−1)n−b(E)χΣ(−1).

In order to compute this number it is now enough to compute the polynomial
χΣ(t) for the signed graphs associated to the different root systems.

An−1 The polynomial is χΣ(An−1)
(t) =

∏n−1
i=0 (t− i)

The constraints are as in the (unsigned) complete graph: given t
colors we can assign any of them to the first vertex, only t− 1 to the
second, and so on.

Thus the number of regions of the arrangement is n! (this agrees
with the fact that the reflection group of type An−1 is the symmetric
group Sn of all permutations of n elements - and of those there are
notoriously n!.

Bn The polynomial is χΣ(Bn)(t) =
∏n
i=1(t− 2i+ 1)

Here the constraints are as follows: between any two vertices we
have two signed edges, that forbid the two vertices to have the same
or the opposite color. Moreover the half-edges forbid the color 0
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everywhere. So that for (odd) t signed colors we have (t− 1) possi-
bilities for vertex 1, (t− 3) for vertex 2 and so on.

Thus the number of regions of the arrangement (and hence the or-
der of the reflection group) is 2n(2n− 2)(2n− 4) · · · = 2nn!

Dn The polynomial is χΣ(Dn)(t) = (t−n+ 1)
∏n−1
i=1 (t− 2i+ 1)

Here the constraints are as in Bn but 0 may be allowed: between any
two vertices we have two signed edges, that forbid the two vertices
to have the same or the opposite color. Therefore we can sum over
the possibilities: either 0 is not used, or it is used once, and there are
n possibilities to assign it, while all other vertices must be colored
differently, and according to the rules of Bn:

χΣ(Dn)(t) =

n∏
i=1

(t− 2i+ 1) +n
n−1∏
i=1

(t− 2i+ 1).

The number of regions of the arrangement (and hence the order of
the reflection group) is n(2n− 2)(2n− 4) · · · = 2n−1n!
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Exercises IV

IV.1 Prove that axiom (r2) in the definition of a matroid rank function is
equivalent to the statement that

r(A∪ {e}) + r(A∪ {f}) > r(A) + r(A∪ {e, f}) for all A ⊆ E, e, f ∈ E.

IV.2 Let Σ be a connected, loopless signed graph and let T be any spanning
tree of Σ (i.e., T is an acyclic set of regular edges that are incident to
every vertex). Prove:

• For every regular e ∈ Er \ T there is a unique circuit contained in
T ∪ {e}. We call this circuit C(T , e).

• If Σ is unbalanced and has no half-edges, then there is an edge
e ∈ E such that C(T , e) is unbalanced.
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Chapter 5

A polyhedral interlude

5.1 Motivation: a loose end about flows on graphs

Recall that an integral k-flow on a graph G = (V ,E,h, t) is an assignment
f : E→ {−k, . . . ,k} such that∑

h(e)=v

f(e) =
∑
t(e)=v

f(e) (as an equation in Z) for all v ∈ V . (5.1)

The task we set ourselves in Section 1.3 was to determine the function ϕN

G

that counts the number of nowhere-zero integral k-flows on G.

Definition 5.1.1. Call an integer k- flow on G positive if f(E) > 0. Let IG(k) be
the number of positive integral k-flows on G.

We can make any flow positive by “flipping” edges, i.e., performing the
following operation: Given a graph G = (V ,E,h, t) and A ⊆ E, let

G¬A := (V ,E,h ′, t ′), where h ′(a) = t(a) and t ′(a) = h(a) for all a ∈ A.

Intuitively, as the word says, we “flip” head and tail of all edges in A.

Lemma 5.1.2. If f is a nowhere-zero flow on G, let A := {e ∈ E | f(e) < 0}. Then
the assignment

f ′(e) :=

{
−f(e) if e ∈ A
f(e) otherwise

is a positive integer k-flow on G¬A.

Proof. We only have to show that f ′ is an integer k-flow.

In particular, for every nowhere-zero integral flow there is exactly one set
A ⊆ E such that f ′ is a positive integral flow on G¬A. This shows that

52



ϕN

G(k) =
∑
A⊆E

IG¬A(k)

and therefore we are led to consider the function IG(k).

Recall the incidence matrix of the graph G, a matrix A ∈ RV×E whose v-th
component in the e-th column is

(Ae)v =


1 if v = h(e)
−1 if v = t(e)
0 otherwise.

Now a positive k-flow on G is any f ∈ ZE such that

Af = 0, 0 < f < k. (5.2)

where 0 = (0, . . . , 0), k = (k, . . . ,k) and the inequalities are understood com-
ponentwise.

Now consider the set

U := {x ∈ RE | Ax = 0, 0 < x < 1}

and its closure U := {x ∈ RE | Ax = 0, 0 6 x 6 1}.
Then we have

IG(k) = #ZE ∩ kU.

The fact that U is a convex polytope with integer vertices opens up the
possibility to compute IG(k) using Ehrhart theory.

5.2 Polyhedra and polytopes

Recall that, when writing inequalities between vectors we intend the inequal-
ities to be taken componentwise. Moreover, in this section A will denote any
n×m matrix with real entries.

Definition 5.2.1. A polyhedron is any subset of Rn of the form

P = {x ∈ Rn | Ax 6 b}

for some matrix A ∈ Rm×n and some vector b ∈ Rm.

Example 5.2.2. In Figure 1 we depict two instances of polyhedra in R2.

Definition 5.2.3. A polytope is any subset of Rn of the form

P = conv{x1, . . . , xk} := {
∑

λixi | λi ∈ R>0,
∑

λi = 1}

for some finite subset {x1, . . . , xk} ⊆ Rn.

53



^

•
( - 4,6 )

^

←
- Tty =L

"  "
"

" "

Hyp f
Xt Lys 8

E

fXt2ys8 . % >

P
I - X - Y E 2

.

=
>

P
-

 X - Y E - 2 a

P1

"  "
"

" "

Hyp72 fXt2ys8
E

E

73
.

p
-

-

>

-
 X - Y

EL
(a) The (unbounded) polyhedron{[

1 2
−1 −1

] [
x

y

]
6

[
8
−2

]}

^

←
- Tty =L a

fXt2ys8 • ( 2,3 )

I
••

.

=
> ⇐. It

§ . s

-
 X - y E

-2
^

•
( - 4,6 )

"  "
"

" "

Http g xt2ys8 Pf Pf
E

E
.

=
>

P PS
-

 X - y E - 2

(b) The (bounded) polyhedron


1 2
−1 −1
−1 1
1 −1

[xy
]
6


8
−2
1
−1




Figure 1
^

←
- Tty =L a

fXt2ys8 • ( 2,3 )

I
••

.

=
> ⇐. It

§ . s

-
 X - y E

-2
^

•
( - 4,6 )

"  "
"

" "

Http g xt2ys8 Pf Pf
E

E
.

=
>

P PS
-

 X - y E - 2

Figure 2: The polytope conv
{
(2, 3), ( 5

2 , 3
2 )
}

Example 5.2.4. In Figure 2 we depict a polytope in R2, identical to the bounded
polyhedron of Figure 1b.

The goal of this section will be to prove the following fundamental theorem
of polytope theory.

Theorem 5.2.5. A subset of Rn is a polytope if and only if it is a bounded polyhedron.

The next statement is our stepping stone towards proving Theorem 5.2.5.
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Theorem 5.2.6. Let a1, . . . ,am, v ∈ Rn. Then either

(1) v = λ1a1 + . . . + λmam with λi > 0, or

(2) there is c ∈ Rn such that the hyperplane c⊥ contains t−1 linearly independent
vectors from the set {a1, . . . ,am} such that c·v < 0 and c·a1, . . . , c·am > 0,
where t = dim〈a1, . . . ,am, v〉.

Proof. First, notice that (1) and (2) are mutually exclusive: if both hold, then
we would have 0 > c·v = λ1c·a1 + . . . + λmc·am > 0, a contradiction. Thus, it
will suffice to show that in any case at least one of the options holds.

Let V := 〈a1, . . . ,am〉. If v 6∈ V , then V ( Rn is a proper subspace, and
thus it is contained in a hyperplane H. Choose c to be any normal vector to
H. We have c·v 6= 0 and so, after possibly switching sign of c, we have c·v > 0.
Moreover, as V ⊆ H, we also have c·a1 = . . . = c·am = 0, so case (2) holds.

Assume from now v ∈ V and, without loss of generality, V = Rn, so that
t = n. Choose then a linearly independent set {ai1 , . . . ,ain } among the ai and
set

D0 := {i1, . . . , in}

and for all i > 0 iterate the following procedure.

(i) Consider the (unique) expression v =
∑
j∈Di λjaj. If λj > 0 for all j ∈ D,

we are in case (1) and we stop.

(ii) Otherwise, choose h := min{j ∈ D | λj < 0} and let H = 〈aj | j ∈ D \ {h}〉,
a hyperplane of which we can choose a normal c with c·ah = 1, so that
c·v = λh < 0.

(iii) If C·ai > 0 for all i = 1, . . . ,m, we are in case (2) and we can stop.

(iv) Otherwise, let s := min{j ∈ [m] | c·aj < 0}, set

Di+1 := (Di \ {h})∪ {s}

and repeat.

We must prove that this iteration terminates; by way of contradiction, assume
that this is not the case. Then, since there is only a finite number of options
for choosing Di ⊆ [m], we must have Dk = Dl for some k < l.
Now at every step i between k and l one element is removed from (and one
is added to) Di. Let r be the maximum among all elements that are removed
at some step i, k 6 i < l and let p be a step where this happens (so Dp+1 =

Dp \ {r} ∪ {j} for some j). Moreover, since Dk = Dl there must be a q 6= p,
k 6 q < l, such that r is added to Dq at the q-th step. In particular,

Dp ∩ {r+ 1, . . . ,m} = Dq ∩ {r+ 1, . . . ,m} (5.3)
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Letting cq be the vector from item (ii) in the q-th iteration and considering the
(unique) expression v =

∑
j∈Dp λjaj we reach the desired contradiction:

0 > cq·v = cq·(
∑
j∈Dp

λjaj) =
∑
j∈Dp

λjcq·aj > 0.

the first inequality is by the choice of cq in item (ii). The second inequality
holds because, in fact, every summand is nonnegative and the r-th is positive.
To prove this, remember that

∗ since r is removed from Dp, by (ii) r = min{j ∈ Dp | λj < 0}, and

? since r is added to Dq by (iv) r = min{j ∈ [m] | cq·aj < 0}.

Now let j ∈ Dp:

If j < r then λj > 0 by ∗ and cq·aj > 0 by ?, thus λjcq·aj > 0.

If j = r then λj < 0 by ∗ and cq·aj < 0 by ?, thus λjcq·aj > 0.

If j > r then j ∈ Dq by Equation (5.3) and since the element removed
from Dq is smaller than r (by maximality in the choice of r), then the
definition of cq implies cq·aj = 0.

Let us review the two alternatives in the claim of Theorem 5.2.6. Claim
(1) can be rephrased by saying that “v is in the convex cone generated by
a1, . . . ,am”. In fact, a convex cone is any C ⊆ Rn such that λx+ µy ∈ C for all
x,y ∈ C and all λ,µ > 0, and the smallest convex cone containing a given set
x1, . . . xm ∈ Rn is called the “cone generated by x1, . . . xm and written

cone{x1, . . . , xm} := {λ1x1 + . . . + λmxm | λi > 0}

and any convex cone arising this way is called finitely generated.
On the other hand we call polyhedral cone any nonempty C ⊆ Rn of the

form
C = {x ∈ Rn | Ax 6 0} (5.4)

for some matrix A.

Example 5.2.7. The cone in Figure 3c is generated, e.g., by the vectors
[

2
−1

]
and

[
1
−1

]
.

The alternative expressed in Theorem 5.2.6 then can be understood to ex-
press the fact that any point v that is not in the convex cone generated by
a1, . . . ,am is also not in the smallest polyhedral cone containing the ais. In
this vein, and more precisely, we have the following.
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Proposition 5.2.8. A convex cone is polyhedral if and only if it is finitely generated.

Proof.
Finitely generated ⇒ polyhedral. Let X := {x1, . . . , xm} ⊂ Rn and assume
without loss of generality that x1, . . . , xn span Rn. Every nonzero vector
c ∈ Rn defines a halfspace {x | c·x 6 0} bounded by the hyperplane
{x | c·x = 0}, and we consider the set H of all halfspaces containing X and
whose bounding hyperplanes are spanned by n−1 linearly independent
elements among the xi. For each halfspace H ∈ H choose a defining
vector cH. By Theorem 5.2.6, we have

cone{x1, . . . , xm} =
⋂

H

and since there are finitely many elements in H, the cone is polyhedral
(with respect to the matrix whose rows are the vectors cH, H ∈ H).

Polyhedral⇒ finitely generated. Consider a polyhedral cone C := {Ax 6 0}
and call a1, . . . ,am the rows of the matrix A. Then the cone generated by
the a1, . . . ,am is polyhedral by the previous item (“the other direction”),
and so there are b1, . . . ,bt ∈ Rn such that

cone{a1, . . . ,am} = {Bx 6 0}

for the matrix B whose rows are the bis.

Claim. cone{b1, . . . ,bt} = C, so C is finitely generated.

Proof. We call K := cone{b1, . . . ,bt} and split the proof in two parts.
First we prove K ⊆ C. In fact, by definition ai ∈ K and so bj·ai 6 0
for all i, j. Thus Abj 6 0, and consequently bj ∈ C, for all j.
Now we prove C ⊆ K. If there was a y ∈ C \ K, then by Theo-
rem 5.2.6 there would be c with c·y < 0 and c·bi > 0 for all i. But
then we would have

(−c)·bi 6 0 for all i, so − c ∈ cone{a1, . . . ,am},

and we could write −c =
∑
i λiai with all λi > 0. In particular, for

every x ∈ C we’d have

(−c)·x = (
∑
i

λiai)x =
∑

λiai·x 6 0

the last inequality because λi > 0 and, since x ∈ C, ai ·x 6 0.
In particular, since y ∈ C we would have c·y > 0, contradicting
c·y < 0.
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The last preparation for the proof of Theorem 5.2.5 is a statement charac-
terizing (possibly unbounded) polyhedra. Recall that we add subsets of Rn

pointwise – i.e., for A,B ∈ Rn we write A+B = {a+ b | a ∈ A, b ∈ B}.
Proposition 5.2.9. Let P ⊆ Rn. The following are equivalent.

(1) P is a polyhedron,

(2) P = Q+C for a polytope Q and a polyhedral cone C.
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Figure 3: The polyhedron P in (a) can be written as P = Q+C for the polytope
Q from (b) and the polyhedral cone C from (c).

Proof of Proposition 5.2.9.

(2)⇒(1) Suppose P = Q + C with Q a polytope, say Q = conv{x1, . . . , xm},
and C a polyhedral cone, say C = cone{y1, . . . ,yt}. Then, v ∈ P if and
only if (

v

1

)
∈ cone

{(
x1
1

)
, . . .

(
xm
1

)
,
(
y1
0

)
, . . .

(
yt
0

)}
(5.5)

Call K the finitely generated cone in Equation (5.5). By Proposi-
tion 5.2.8, K is polyhedral, i.e., there is a matrix A ′ such that

K =

{
A ′
(
v

λ

)
6 0
}

= {Ax+ λ·b 6 0}

where b is the last column of A ′ and A is A ′ without the column b.

Therefore, v ∈ P if and only if Av 6 −b, and thus P = {Ax 6 −b} is a
polyhedron.

(1)⇒(2) Suppose now that P = {Ax 6 b} for some matrix A and vector b.
Consider the polyhedral cone

K :=

{[
0 −1
A −b

](
x

µ

)
6 0
}

=

{(
x

µ

)∣∣∣∣Ax− µb 6 0,µ > 0
}
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By Proposition 5.2.8 this cone is finitely generated, say by vectors(
x1
µ1

)
, . . . ,

(
xm
µm

)
, where we can suppose after rearranging and rescal-

ing that there is 1 6 k 6 m such that µi = 1 for all i 6 k and µi = 0
for i > k.

Now by definition P =

{(
x

µ

)
∈ K

∣∣∣∣µ = 1
}

, so x ∈ P if and only if(
x

1

)
∈ K, i.e.,

(
x

1

)
can be expanded as a positive combination of the

generators of K:{
x =

∑
i6k λixi

1 = λ1 + . . . + λk
, λi > 0 for all i,

Recalling the definition of cone and convex hull, this is equivalent to

x ∈ conv{x1, . . . , xk}+ cone{xk+1, . . . , xm},

and the claim follows withQ = conv{x1, . . . , xk} and C = cone{xk+1, . . . , xm},
the latter being polyhedral by Proposition 5.2.8.

Proof. Proof of Theorem 5.2.5 The claim follows from Proposition 5.2.9 by
noting that the only bounded polyhedral cone is the cone generated by the
single vector 0, i.e., a single point.

5.3 Faces of polyhedra

Definition 5.3.1. A face of a polyhedron P = {Ax 6 b} is any subset of P of the
form

F = {x ∈ P | A ′x = b ′}

where A ′x 6 b ′ is a subsystem of (i.e., consists only of some of the inequalities
of) Ax 6 b.
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tope P: a vertex (F0), a
facet (F1) and the (im-
proper) face F2 = P.
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5.3.1 Supporting hyperplanes

An equivalent characterization of faces of polyhedra uses the notion of “sup-
porting hyperplane". We call a hyperplane H a supporting hyperplane for a
polyhedron P if “P touches H but lies wholly on one side of H”.

Definition 5.3.2. Let P = {Ax 6 b} be a polyhedron. An affine hyperplane
H = {c·x = δ} is called a supporitng hyperplane for P if δ = max{c·x | x ∈ P}.
Supporting hyp :

±÷÷?
.

,
.

.
a"

means .
"

IHE

aix -

.

biItami. tatted.•a⇐ sb'

aisbi i
"

H1 and H2 are support-
ing hyperplanes of the
polyhedron P.

Remark 5.3.3. Clearly every (nonempty) face F of a polyhedron P is of the form
F = P ∩H for some supporting hyperplane H. Indeed, suppose F = {x ∈ P |

A ′x = b ′} is nonempty. Then, if c is the sum of all rows of A ′, clearly F is the
set of all points x ∈ P attaining the maximum δ = max{c·x | x ∈ P}.

Proving the converse to Remark 5.3.3 – that every intersection of P with a
supporting hyperplane is a face – needs more work, based on a corollary of
Theorem 5.2.6 that bears considerable importance in its own right.

Lemma 5.3.4 (“Farkas’ Lemma”). Let A be a matrix and b a vector. Then there
exists x > 0 such that Ax = b if and only if yb > 0 for each row vector y with
yA > 0.

Proof. One direction is clear: if x > 0, Ax = b and yA > 0 then clearly
yb = yAx > 0.

For the other direction, let a1, . . . ,am be the columns of A and argue by
contraposition: if there is no x > 0 with Ax = b, then b 6∈ cone{a1, . . . ,am}

and thus, by Theorem 5.2.6, there is y with yb < 0 and yA > 0 (the latter
being equivalent to yai > 0 for all i).

Corollary 5.3.5. Let A be a matrix and b be a vector. Then the system Ax 6 b has
a solution x if and only if yb > 0 for each row vector y > 0 with yA = 0.

Proof. The system Ax 6 b has a solution if, and only if, the system

[I | A | −A]

z0
z1
z2

 = b
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has a nonnegative solution. (Indeed: given a solution x to the first system,
define vectors x+ and x− as the positive and negative part1 of x, so that x+ >

0, x− 6 0 and x = x+ + x−. then the (nonnegative) vector

 b−Ax

x+

−x−

 solves

the second. Conversely, if a nonnegative

 z0
z1
z2

 solves the second system,

then A(z1 − z2) = b− z0 6 0.) Now apply Farkas’ Lemma to conclude that
the latter system has a nonnegative solution if and only if yb > 0 for all y
with y[I | A | −A] = [yI | yA | −yA] > 0 - i.e, y > 0 (from the first block) and
yA = 0 (from the second and third block).

We are ready now to state and prove the following result, known as “du-
ality theorem for linear programming”.

Proposition 5.3.6. Let A be a matrix and b, c be vectors. Then

max{c·x | Ax 6 b} = min{yb | y > 0, yA = c}

whenever both sets are nonempty.

Proof. If Ax 6 b, y > 0 and yA = c, then c·x = yAx 6 yb. This implies the
inequality max 6 min, if the maxima and minima exist.

For the other inequality we need to show that there exist x, y with Ax 6 b,
y > 0, yA = c and c·x > yb. This requirement we can translate in proving
existence of a solution to

0 −1
A 0
−c bt

0 At

0 −At


︸ ︷︷ ︸

=:Ã

[
x

yt

]
6


0
b

0
ct

−ct

 .

︸ ︷︷ ︸
b̃

(5.6)

Now Corollary 5.3.5 implies that the solvability of (5.6) is equivalent to prov-
ing wb̃ > 0 for every w > 0 such that wÃ = 0. In order to check this last state-
ment write w = (w0,w1,w2,w3,w4) according to the block-decomposition in
(5.6). Then the statement’s premise is that wi > 0 for all i and

(1) w1A−w2c = 0, (2) w2b
t + (w3 −w4)A

t > 0, (5.7)

and we need to prove that

(3) w1b+ (w3 −w4)c
t > 0.

Now we distinguish two cases:

1Explicitly: x+i =

{
xi if xi > 0
0 else.

, x−i =

{
xi if xi < 0
0 else.
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w2 > 0. Here we write

w2w1b = w2b
twt1

(2)
> (w3 −w4)A

twt1
(1)
= (w3 −w4)w2c = w2(w3 −w4)c,

and (3) follows.

w2 = 0 Since by assumption the sets over which maximum and minimum are
taken in the proposition’s claim are nonempty, we can choose elements
x0, y0 with Ax0 6 b and y0 > 0, y0A = c. Then

w1b > w1Ax0
(1)
= 0

(2)
> (w4 −w3)A

tyt0 = (w4 −w3)c
t

and (3) follows, concluding the proof.

Corollary 5.3.7. Let P be a polyhedron. Then F ( P is a face of P if and only if
F = P ∩H, where H is a supporting hyperplane of P.

Proof. Let P = {Ax 6 b} and let F = P∩Hwith H = {c·x = δ} and δ := min{c·x |
x ∈ P}, for some c 6= 0. Now by Proposition 5.3.6 we have δ = min{yb | y >
0, yA = c}, and we can choose y0 that attains this minimum. Now consider
A ′x 6 b ′, the system obtained from the rows of Ax 6 b corresponding to
positive entries of y0. Then we have F = {x ∈ P | A ′x = b ′} since for every
x ∈ P we have Ax 6 b and so c·x = δ is equivalent to y0Ax = y0b and in turn
(erasing trivial rows) to A ′x = b ′.

The other direction is proved in Remark 5.3.3.

5.3.2 Facets

Definition 5.3.8. A facet of a polyhedron P is any maximal proper face of P.

Given a polyhedron P = {Ax 6 b} fix an enumeration a1, . . . ,am of the
rows of A (resp. the components of b), so that P =

⋂
i=1,...m{ai ·x 6 bi}. Such

an inequality aj·x 6 bj is called an implicit equality if P ⊆ {aj·x = bj}. We can
then let A=x 6 b= denote the system of all implicit equalities and A+x 6 b+

the system consisting of all other inequalities, called effective inequalities.

Remark 5.3.9. Notice that any face F = {x ∈ P | A ′x = b ′} can be written
as F = {x ∈ P | A+ ′x = b+

′
}, where A+ ′x 6 b+

′ consists of the effective
inequalities in A ′x 6 b ′. (in fact, any implicit equality is... implicit in the
requirement “x ∈ P).

Remark 5.3.10. If a system has an effective inequality ai·x 6 bi then there must
be a point x ∈ P \ {ai·x = bi} and in particular this point x satisfies A=x = b=

and A+x < b+.
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Recall that an inequality in a system of constraints is called redundant if its
removal does not change the set of solutions.

Lemma 5.3.11. Suppose ai ·x 6 bi is an effective, non redundant inequality. Then
F := {x ∈ P | ai·x = bi} is a facet of P

Proof. Call A ′x 6 b ′ the system given by all effective inequalities other than
ai·x 6 bi. It is enough to prove that there is a point x0 with

A=x0 = b=, A ′x0 < b
′ ai·x0 = bi

such an x0 does not satisfy with equality any other row of A ′x 6 b ′, thus the
only face bigger than F is P itself.

In order to find x0 first recall Remark 5.3.10, which guarantees that we can
find some x1 with

A=x1 = b= and A+x1 < b
+

and, since ai·x 6 bi is not redundant, we can also pick x2 with

A=x2 = b= and A ′x2 < b
′, ai·x2 > bi

Now we can pick x0 := tx1 + (1− t)x2 for some t ∈ (0, 1) such that ai·x0 = bi.

Supporting hyp :

±÷÷?
.

,
.

.
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"

IHE

aix -

.

biItami. tatted.•a⇐ sb'

aisbi i
"

Proposition 5.3.12. Every face of a polyhedron P is an intersection of facets of P.

Proof. Let F be a face of P. By definition, it can be written as F = {x ∈ P | A ′x =
b ′} for some subsystem A ′ 6 b ′ of Ax 6 b, say consisting of the inequalities
a ′i ·x 6 b ′i for i = 1, . . . ,k. By Remark 5.3.9 we can assume that all a ′i ·x 6 b ′
are effective, irredundant inequalities. Then, obviously

F =

k⋂
i=1

{
x ∈ P | a ′i·x 6 b ′i

}
and Lemma 5.3.11 says that every set on the right-hand side is a facet of P.
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5.3.3 Vertices

Lemma 5.3.13. A polyhedron P is an affine subspace if and only if it has no nonempty
faces except P itself.

Proof. If P is an affine subspace then it has the form P = {Mx = v} for some
matrix M and some vector v. Its standard description via inequalities is P =

{Ax 6 b} with A =

[
M

−M

]
and b =

[
v

−v

]
. Now obviously the set P satisfies

A ′x = b ′ for all subsystems of Ax 6 b, so every nonempty face equals P.
On the other hand, if P = {Ax 6 b} has no nonempty faces except P, in

particular for the “full” subsystem we have

P = {x ∈ P | Ax = b} = {x | Ax 6 b, Ax = b} = {Ax = b},

an affine subspace.

Corollary 5.3.14. The minimal nonempty faces of a polyhedron are affine subspaces.

Proof. From Definition 5.3.1 one gathers that every face F of P is a polyhedron
in its own right, and every face F ′ ⊆ F is a face of F if and only if it is a face
of P. Thus the minimal nonempty faces of P are polyhedra that do not have
nontrivial faces themselves, and by Lemma 5.3.13 are affine subspaces.

Corollary 5.3.15. The minimal nonempty faces of a convex polytope P have dimen-
sion 0 (and are called “vertices” of P). If P = {Ax 6 b}, every vertex of P is the
unique solution of some system A ′x = b ′, where the rows of A ′ are a maximal lin-
early independent set of the rows of A.

Proof. Since every convex polytope is bounded, the only affine subspaces it
can contain are 0-dimensional ones.

5.4 Unimodularity and integrality

Definition 5.4.1. Call a polytope P ⊆ Rn integral if all its vertices are points
in Zn, rational if its vertices lie in Qn.

We are interested in finding conditions for a polytope to be integral - in
particular, we are aiming at proving that Equation (5.2) defines the interior of
an integral polytope. To this end, we introduce the notion of unimodularity
of matrices.

Let A be a matrix. A minor of A is any matrix obtained by deleting some
rows and some columns from A.

Definition 5.4.2. An integral matrix A is called totally unimodular if every
square minor of A has determinant 0, 1 or −1.
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Proposition 5.4.3 (Franklin and Veblen, 1921). Let A be a matrix with entries
from {0,+1,−1} and such that each column contains exactly one +1 and exactly one
−1. Then A is totally unimodular.

Proof. Let M be a square minor of A. If M has a column with at most one
nonzero entry, developing its determinant with respect to that column proves
the claim for M. Otherwise every column of M has exactly one +1 and one
−1: in this case the sum of all rows vanishes, thus M does not have full rank
and the determinant of M is 0.

Corollary 5.4.4. Incidence matrices of graphs are totally unimodular.

Proof. See Exercise V.2.

Our goal in this section is to prove the following characterization of totally
unimodular matrices.

Theorem 5.4.5. For an integral matrix A, the following statements are equivalent.

(i) The matrix A is totally unimodular

(ii) For all integral vectors b, all vertices of the polyhedron {x | Ax 6 b, x > 0} are
integral.

(iii) For all integral vectors a,b, c,d, the polyhedron {x | a 6 Ax 6 b, c 6 x 6 d}
has only integral vertices.

In order to prove this theorem we start by considering a weaker notion:
unimodularity.

Definition 5.4.6. An integer matrix A is called unimodular if every maximal
square minor has determinant 0, 1 or −1.

Remark 5.4.7. Notice that an n×m-matrix A is totally unimodular if and only
if the block matrix [I|A] is unimodular, where I is the n× n-identity matrix
(see Exercise V.4)

Remark 5.4.8. Obviously a square matrix B is unimodular if and only if detB =

±1. Thus, an invertible square matrix B is unimodular if and only if B−1 has
only integer entries (as can be ascertained by recalling that B−1 = 1

detB Adj(B)
and that the adjugate of an integral matrix is again integral).

Proposition 5.4.9. Let A be an integral matrix of full row rank. Then A is unimodu-
lar if and only if for every integral vector b the polyhedron Pb := {x | Ax = b, x > 0}
has only integral vertices.

Proof.
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A unimodular ⇒ Pb integral for all integral b. Suppose that A is a uni-
modular n×m-matrix and consider a vertex v of P. Then, there are m
linearly independent constraints in the system −I

A

−A

 x 6
 0

b

−b


that are satisfied with equality at v. In particular, the set of columns {ai}I
ofA corresponding to nonzero components of v are linearly independent
(since, given a linear dependency

∑
i λiai = 0, we could add to v a

(small enough) multiple of the vector with λi in the i-th component for
all i ∈ I and 0 otherwise, and we would obtain a positive-dimensional
space W satisfying with equality the same m independent constraints
as v, contradicting the fact that v is a vertex). Now since A is full-row-
rank we can extend the columns {ai}I to a column-basis of A, obtaining
a maximal (and invertible) square minor B with the property that B−1b

equals v at each of its nonzero components. Since A is unimodular, B−1

and hence B−1b is integral (see Remark 5.4.8). Since nonzero coordinates
of v equal some coordinates of B−1b, it follows that v is integral.

Pb integral for all integral b ⇒ A unimodular. Suppose that Pb is integral
for all integral b and let B be an invertible maximal minor of A. Consider
B−1 and, in order to prove detB = ±1, we show that B−1c is integral for
every integral vector c (see Remark 5.4.8). Take c integral and choose y ∈
Zn such that z := y+ B−1c > 0. Then b := Bz ∈ Zn is integral and we
can extend z by zero components to a vector z ′ ∈ Zm withAz ′ = Bz = b.
Now z ′ is a vertex of Pb (as it is in the polyhedron and satisfies n linear
independent constraints with equality) and by assumption it is integral.
It follows that z (obtained from z ′ by canceling zero components) and
with it B−1c = z− y are integral, as required.

Proof. Proof of Theorem 5.4.5

(i)⇔ (ii) Recall that A is totally unimodular if and only if [I|A] is unimodular
(Remark 5.4.7). By Proposition 5.4.9, this is equivalent to all vertices of
the polyhedron {z | [I|A]z = b, z > 0} being integral, for every integral
b. The latter statement is equivalent to saying that all vertices of {x | x >
0, Ax 6 b} (i.e., the projection of the former polyhedron on the last m
coordinates) are integral.
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(i)⇔ (iii) Notice that an integer matrix A is unimodular if and only if the matrix

Ã :=


I

−I

A

−A


is totally unimodular as well. Now by the equivalence "(i) ⇔ (ii)" this
means that

P̃f := {z | z > 0, Ãx 6 f}

has integral vertices for all f ∈ Z3n. Now given a,b, c,d ∈N let

f0 :=


d

c

b

a

 (5.8)

and notice that P̃f0 = {x | a 6 Ax 6 b, c 6 x 6 d}. Since every f ∈ Z3n

can be written as in Equation (5.8) for suitable a,b, c,d, the proof of
equivalence is complete.

5.5 Triangulations

We will need to "dissect" a polytope into smaller polytopes.

Definition 5.5.1. A polyhedral (resp. polytopal) complex is a collection K of
polyhedra (resp. polytopes) such that every face of every member of K is again
a member of K, and for any two members P,Q ∈ K the intersection P ∩Q is a
face of both P and Q. We call faces (resp. vertices, etc.) of K the faces (vertices,
etc.) of members of K. The support of the complex is |K| :=

⋃
K∈K K.

We call a set X of points affinely independent if dim convX = |X|− 1.

Xi •

•
q

X
,  

- Xo
• ToXz - Xo

Xz

• ×
,

9
• • Xs - Xo

Xo Xo

Remark 5.5.2. Notice that given x0, . . . , xd ∈ Rd, then conv{x0, . . . , xd} = x0 +

{
∑
i=1,...,d λi(xi − x0) | λi > 0,

∑
i>0 λi 6 1} and this has dimension d if and

only if the vectors xi − x0 are linearly independent in Rd.
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In view of the next definition, recall also that a simplex is any polytope
of the form convX for an affinely independent set of points X. In particular,
a simplex has the smallest possible number of vertices for a polytope of its
dimension.

Definition 5.5.3. Let P be a polytope. We call subdivision of P any polytopal
complex K with |K| = P. A triangulation of P is a subdivision T of P such that
every member of T is a simplex.

Our goal is to show that every polytope has a triangulation all of whose
vertices are vertices of the polytope. For this, we set up some notation.

Throughout this section let V be a finite subset of Rd, let P = convV be
a (full-dimensional) polytope in Rd, and let h : V → R>0 any assignment of
a positive real number to every vertex. We think of h as a height function and
will “lift” the points of V accordingly into Rd+1 obtaining a set of points

V(h) := {(v,h(v)) | v ∈ V} ⊂ Rd+1.

We will throughout write a point in Rd+1 = Rd ×R as a pair (x, t) with
x ∈ Rd, t ∈ R. Then, we consider

π : Rd+1 → Rd, (x, t) 7→ x

the standard coordinate projection (for instance, π(V(h)) = V).
Moreover, consider the polyhedron

` := {(0, t) ∈ Rd+1 | t > 0},

i.e., the “vertical” coordinate halfline in Rd+1 (notice that π(`) = 0).

Definition 5.5.4. The epigraph of P with respect to the height function h is

P↑h := convV(h) + `.

*
pm

*
pm

•
I voihwd )

•

iv. man,
•

H.hn/Vlhl
• He

• • 1111
"

tf• ( mhm ) •

> Lila ,a )
• • • •

$
V • • • •

$
Vo V

,
Vz Vz Vo V

,
Vz Vz

By Proposition 5.2.9, P↑h is a polyhedron. Let us study its supporting
hyperplanes.
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Lemma 5.5.5. With the notation above, given a vector (a,α) ∈ Rd+1 and b ∈ R

define a hyperplane H= and a halfspace H6 as

H� := {(x, t) ∈ Rd+1 | 〈a, x〉+αt � b} for � ∈ {=,6}.

If P↑h ⊆ H6, then α 6 0. Moreover, if H= is a supporting hyperplane for P↑h, then
the face H= ∩ P↑h is bounded if and only if α < 0.
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*
pm

•
I voihwd )
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•
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• • 1111
"

tf• ( mhm ) •

> Lila ,a )
• • • •

$
V • • • •

$
Vo V

,
Vz Vz Vo V

,
Vz Vz

Proof. If P↑h ⊆ H6, then in particular for every p ∈ P↑h the half-line p+ ` lies
in H6, meaning 〈a,p〉+αt 6 b for all t ∈ R+. This is only possible if α 6 0.

Suppose now that H= is a supporting hyperplane and consider the face
F := H= ∩ P↑h. Now F is unbounded if and only if F+ ` ⊆ F. In particular, for
every p ∈ F we have p+ (0, R>0) ⊆ H=, i.e., 〈a,p〉+ αt = b for all t ∈ R>0.
This is only possible if α = 0.

Corollary 5.5.6. Every bounded face is a face of some bounded facet.

Proof. Let F be a bounded face. By Corollary 5.3.15 we know that F is an
intersection of facets F1, . . . , Fk: in particular, F is a face of each Fi. Now
assume that every Fi is unbounded. By Lemma 5.5.5, this means that Fi is
contained in a vertical hyperplane, and with any x ∈ Fi we have x+ ` ⊆ Fi.
In particular, also F, the intersection of the Fi, contains the whole halfline
x+ ` for every x ∈ F. Since F is non-empty, F would be unbounded: this is a
contradiction to all Fi being unbounded.

Lemma 5.5.7. It is possible to choose the height function h with the following prop-
erty: if {v0, . . . , vd} ⊆ V is a maximal affinely independent set, then the (vi,h(vi))
are affinely independent and span a hyperplane that does not contain any other point
of V(h).

Proof. Write V = {v1, . . . , vm} and consider any d+ 1-subset I = {i0, . . . , id} ∈( [m]
d+1

)
such that {vi}i∈I is affinely independent. In order for {(vi,hi)}i∈I to
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determine a hyperplane in Rd+1 they must be affinely independent, and thus
(by Remark 5.5.2) we must have that the determinant

δ(I) :=

∣∣∣∣ vi1 − vi0 · · · vid − vi0 0
hi1 − hi0 · · · hid − hi0 1

∣∣∣∣
is non-zero (notice that the last column is never a nontrivial linear combi-
nation of the first d, since vi1 − vi0 , . . . , vid − vi0 are linearly independent by
assumption). This is however automatically ensured since this determinant
equals ±|vi1 − vi0 · · · vid − vi0 | 6= 0 because of affine independence of the vi.

Now, if some (vj,hj), j 6∈ I, lies on the same hyperplane as (vi0 ,hi0), . . . , (vid ,hid),
then

γ(I∪ {j}) :=

∣∣∣∣∣∣
vi0 · · · vid vj
hi0 · · · hid hj
1 . . . 1 1

∣∣∣∣∣∣ = 0

Thus, in order to satisfy the claim, we have to choose h ∈ Rm so that∏
I, j 6∈I

γ(I∪ {j}) 6= 0

where the product is over all index sets I of maximal affinely independent
points in V .

As the expression on the left-hand side is a non-constant polynomial, the
set of “good” h is nonempty.

Theorem 5.5.8. Every polyhedron P = conv(V) has a triangulation all of whose
vertices are in V .

Proof. Choose h as in Lemma 5.5.7 and consider the associated P↑h. Define

T :=
{
π(F) | F is a bounded face of P↑h

}
Clearly the 0-dimensional members of T are a subset of V . Moreover, for every
bounded facet F of P↑h, say supported on a hyperplane H (say F = H= ∩ P↑h
and P↑h ⊆ H6 = {〈(a,α), (x, t)〉 6 b}):

(a) F is a simplex.
Proof. By the choice of h we know that every bounded facet F of P↑h is
supported on a hyperplane that contains at least d+ 1 affinely indepen-
dent vertices (since dim(F) = d), but no hyperplane can contain more
than d+ 1 points from V(h): thus F is a simplex.

(b) The restriction π : F→ π(F) is bijective, with inverse ι : x 7→
(
x, b−〈a,x〉

α

)
.

Proof. Since F is bounded, by Lemma 5.5.5 α 6= 0. Thus the inverse is
well-defined and proves bijectivity.
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(c) For every X ⊆ F, conv(π(X)) = π(conv(X))

Proof. Given (q0, t0), . . . , (qk, tk) ∈ F and λ1, . . . , λk ∈ R, we have (q0, t0) =∑
i λi(qi, ti) if and only if q0 =

∑
i λiqi (for the "if" direction: recall the

inverse map of item (b) and notice that ti = (b− 〈a,qi〉)/α for all i, and
thus α

∑
i>1 λiti = b− 〈a,

∑
i>1 λiqi〉 = b− 〈a,q0〉 = αt0 )

(d) π(F) is a simplex with set of vertices π(VF), where VF is the set of vertices
of F.

Proof. Since F is a simplex of dimension d, |VF| = d+ 1. Then, by item
(c) π(F) = convπ(VF) has at most d+ 1 vertices. Moreover, linearity of π
implies that dimπ(F) = dim(F) = d and, in particular, π(F) has at least
d+ 1 vertices. The claim follows.

(e) The faces of π(F) correspond bijectively to projections of faces of F.

Proof. Faces of simplices correspond bijectively to (convex hulls of) sub-
sets of vertices. Per items (a) and (d) both F and π(F) are simplices with
vertices, respectively, VF and π(VF). Thus the bijection 2VF → 2π(VF),
I 7→ π(I), induces a bijection between the faces of F and π(F).

Moreover,

(f) T consists of all faces of projections of bounded facets.

Proof. By Corollary 5.5.6 every bounded face of P↑h is a face of a
bounded facet. Thus, by item (e), T is the set of all faces of some π(F), F
a bounded facet of F.

We now claim that T is a triangulation of P. For this we need to check
three things.

(1) |T| = P.
The inclusion ⊆ follows trivially from P = π(P↑h).

In order to prove the inclusion ⊇ is is enough to prove that the open
interior of P is contained in π(P↑h), as π is continuous. Let then p be a
point in the interior of P and let ε be such that the ε-ball Bε(p) is fully
contained in P. Moreover, let

`p := (p+ `)∩ P↑h, i.e.,`p = x+ `

for some x ∈ P↑h. Then x is on the boundary of P↑h and therefore it is
in the intersection of P↑h with a supporting hyperplane. In the notation
of Lemma 5.5.5, there is a vector (a,α) (which we can suppose to be of
norm 1) and a number b such that H= is a supporting hyperplane of
P↑h and

x ∈ F := P↑h ∩H6.
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Now, if α=0 then π(H=) is a hyperplane in Rd that contains p and
bounds the halfspace π(H6). Now P = π(P↑h) ⊆ π(H6), but p+ ε

2 a 6∈
π(H6), a contradiction to Bε(p) ⊆ P.

This means that α > 0 and, by Lemma 5.5.5, the face F is bounded.
Therefore p = π(x) ∈ π(F) ⊆ |T | as was to be shown.

(2) Every member of T is a simplex.

Item (f) shows that every member of T is a face of π(F) for some bounded
facet F. Since every face of a simplex is a simplex, item (d) ensures that
every member of T is a simplex.

(3) T is a polytopal complex.

Since every face of a bounded face is bounded, item (f) shows that T

contains all faces of each of its members. We are left to show that the
intersection of any two T1, T2 ∈ T is a face of both. Let F1 and F2 be
bounded faces of P↑h such that Ti = π(Fi) for i = 1, 2. By item (e) it is
enough to prove

π(F1 ∩ F2) = T1 ∩ T2.

The inclusion ⊆ is trivial.

H
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•
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Furthermore, for any p ∈ T1 ∩ T2 \π(F1 ∩ F2)

the halfline p + ` ⊇ intersects both Fis.
Therefore there are t1, t2 such that (p, t1) ∈
F1 and (p, t2) ∈ F2, and t1 6= t2 because p is
not in π(F1 ∩ F2). Without loss of generality
we can assume t1 < t2. Consider a sup-
porting hyperplane H = {(a,α)·x = δ} to F2.
Then (p, t2) ∈ F2 implies 〈a,p〉 + αt2 = δ.
Since F2 is bounded, we have α < 0 and
so 〈a,p〉 + αt1 > δ, contradicting the fact
that, since H is a supporting hyperplane,
we should have P ⊆ H6. Thus T1 ∩ T2 ⊆
π(F1 ∩ F2) and we are done.

Definition 5.5.9. We say that a polyhedron P (resp. a pointed cone) can be
triangulated using no new vertices if there exists a triangulation T of P such that
the vertices of T are vertices of P.

Analogously, we say that a pointed cone C can be triangulated using no new
generators if there exists a triangulation T of C such that the generators of T

are generators of C.

Corollary 5.5.10. Every polyhedron P can be triangulated using no new vertices.
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5.6 Sources and Bibliography

The approach of Section 5.1 is from the original paper by Kochol [5]. Sec-
tions 5.2 to 5.4 follow more or less closely the treatment by Schrijver [6]. Sec-
tion 5.5 is based on Chapter 5 of Beck and Sanyal [2] and Chapter 3 of Beck
and Robins [1]
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Exercises V

V.1 This exercise should give a geometric intuition for the "Farkas’ type"
statements we have seen. Let

(a) Consider the statement of Farkas’ lemma. Let

A :=

[
1 2
−1 −1

]
, b1 :=

[
8
−2

]
, b2 :=

[
8
−5

]
.

For i = 1, 2 do the following: determine the solutions of Ax = bi;
then draw the set of points y with yA > 0 and check whether
ybi > 0 for all such y.

(b) In order to illustrate Corollary 5.3.5, consider

A :=

 1 1
1 −2
−2 1

 , b1 :=

1
0
0

 , b2 :=

−1
0
0

 .

For i = 1, 2 determine the set of solutions of the system Ax 6 bi,
consider the set of all y ∈ R3 with y > 0 and yA = 0 and verify
whether yb > 0 for all such y.

(c) Check the claim of Proposition 5.3.6 using the dataA from (b) above

and b :=

1
2
0

, c :=
[

1
1

]
. In particular, draw a picture of Ax 6 b and

of the points where c·x is maximum; then draw the set yA = c,
y > 0 and compute the minimum on the right-hand side.

V.2 Recall the definition of the incidence matrix of a graph and prove Corol-
lary 5.4.4.

V.3 (+) Let P be a polyhedron and consider the set F (P) of all faces of P,
partially ordered by inclusion.

(a) Let x0, . . . , xd ∈ Rd be chosen so that these points do not lie all on
the same (affine) hyperplane. Then P := conv{x0 ldots, xd} is called
a simplex. What is the poset of faces of a simplex? (You can start by
concrete examples with d = 2, 3).

(b) Prove that for every polyhedron P, the poset F (P) is ranked.

(c) ++ Prove that for every convex polytope P the poset F (P) is a
ranked lattice.

V.4 Prove that an integer n×m matrix A is totally unimodular if and only if
the block matrix [1 | A] is unimodular (here 1 denotes the n×n identity
matrix).
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V.5 ([1, Exercise 3.3]) Let e1, . . . , ed be the standard basis vectors of Rd. For
every permutation π of the set [n] consider the polytope

∆π := conv{0, eπ(1), eπ(1) + eπ(2), . . . , eπ(1) + eπ(2) + . . . + eπ(d)}.

Prove that the polytopes ∆π and all their faces define a triangulation
of the unit cube [0, 1]d. Moreover, prove that any two such simplices
can be obtained from one another by a congruence (a concatenation of
reflections, rotations and translations).
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Chapter 6

Rational generating functions

The last ingredient we need towards Ehrhart’s theorem is rational generating
functions as "representations" of number sequences.

6.1 Basics

Fix a natural number d and a field K.
The main idea is that any function f : Zd → K can be represented by the

formal expression in the variables z1, . . . , zd:∑
m∈Zd

f(m)zm, where we write zm := z
m1
1 · · · zmdd .

Every such expression is called formal Laurent series. The word "formal" in-
dicates that we are not concerned about analytic convergence. We treat such
"sum" as abstract formal objects.

It is common to call

C[[z1, . . . , zd]] :=

{ ∑
m∈N

f(m)zm

∣∣∣∣∣ f : Nd → C

}
,

the set of formal power series in the variables z1, . . . , zd. The degree of
∑
m∈Zd f(m)zm

is defined as max {
∑
imi | f(m) 6= 0} ∈N∪ {∞}. Thus an element of C[[z1, . . . , zd]]

of finite degree is a polynomial, i.e., an element of C[z1, . . . , zd].

6.1.1 Algebraic structure

The following addition and multiplication rules define a ring structure on the
set of formal power series (and of formal Laurent series, by changing the index
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set from N to Z):∑
m∈N

f(m)zm +
∑
m∈N

g(m)zm :=
∑
m∈N

(f(m) + g(m))zm

∑
m∈N

f(m)zm ·
∑
m∈N

g(m)zm :=
∑
m∈N

(∑
k∈Z

f(k)g(m− k)

)
zm.

Example 6.1.1. The following identity holds in the ring C[[z]]:

1
1 − z

=
∑
k∈N

zk.

Thus, the function f : N → C constant equal to 1 can be represented by the
fraction on the left-hand side. We call “rational” any formal power series that
equals a rational expression in the ring of formal power series.

The gist now is: whether a function f : N→ C agrees with a polynomial can be
ascertained by looking at the rationality of the associated formal power series. In the
next section we will make this precise.

Before that, let us collect some considerations on the case K = C

6.2 The main theorem

Theorem 6.2.1. Fix α1, . . . ,αd ∈ C with d > 1 and αd 6= 0. Then, for every
function f : N→ C the following are equivalent:

(i) ∑
n∈N

f(n)zn =
p(z)

q(z)

where q(z) = 1 + α1z+ . . . + αdzd and p(z) is any polynomial in z of degree
less than d.

(ii) For all n ∈N:
d∑
i=0

αif(n+ d− i) = 0

(iii) For all n ∈N,

f(n) =

k∑
i=1

pi(n)γ
n
i

where the γi are distinct, nonzero complex numbers with 1 + α1z + . . . +
αdz

d = (1 − γ1z)
d1 · · · (1 − γkz)

dk and each pi is a polynomial of degree
less than di
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Proof. Fix q(z) := 1 + αiz + . . . + αdzd = (1 − γ1z)
d1 · · · (1 − γkz)

dk , all γi
nonzero and distinct. Consider the following complex vectorspaces:

• V1 := {f : N→ C such that (i) holds}.
Notice that dimV1 = d, as in (i) we can choose the d coefficients of p(z)
freely.

• V2 := {f : N→ C such that (ii) holds}.
Here we have dimV2 = d because in (ii) the choice of the f(n+ i), i =
0, . . . ,d− 1 is free and determines f completely.

• V3 := {f : N→ C such that (iii) holds}.
Here, for every i we can choose the di coefficients of pi freely, and this
choice determines f completely. Thus, dimV3 = d1 + . . . + dk = d.

• V4 :=


f : N→ C such that∑
n∈N f(n)z

n =
∑k
i=1
∑di
j=1 βij(1 − γiz)

−j (])

for some βij ∈ C and where the γi,di are as in (iii)

.

We claim that dimV4 = d. This is not as evident as in the other cases.

First, notice that V4 is spanned over C by the rational functions

Rij(z) :=
1

(1 − γiz)j
, i = 1, . . . ,k, j = 1, . . . ,di.

Since there are
∑
i di = d such Rijs, we have dimV4 6 d.

Now it is enough to show that the Rij are linearly independent. By way
of contradiction suppose that there is a linear dependency

∑
cijRij(z) =

0 with complex coefficients cij not all equal to zero. Let i0 such that
ci0j 6= 0 for some j, and let j0 be the largest such index. Now multiplying
the linear dependency by (1 − γi0z)

j0 and setting z = 1
γi0

(1) gives the

equality ci0j0 = 0, a contradiction. Thus the Rij are linearly independent
and dimV4 = d.

Now it is enough to show that V1 = V2 = V3 = V4. We now do so, in three
steps.

V3 = V4 Since dimV3 = dimV4 it is enough to prove V4 ⊆ V3. To this end, recall
that

1
(1 − γiz)j

=

(∑
n∈N

γni z
n

)j
=
∑
n∈N

(
j+n− 1
j− 1

)
γni z

n.

1Formal power series are formal objects, and one has to make sense of "setting z to...". In this
case, the subring R of C[[z]] generated by the Rij with i 6= i0 and (1 −γi0z) is in the image of
the ring of rational functions C(z), and the map C(z)→ C[[z]] is injective. Now every function
in R is defined for 1

γi0
and thus the map R→ C obtained by formally replacing z with 1

γi0
is

well-defined, so that an identity in R goes to an identity in C.
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Notice that
(
j+n−1
j−1

)
, as a function of n, is a polynomial of degree j− 1.

Now let f ∈ V4. For all n, f(n) equals the coefficient of zn in (]), which
we can compute to be

k∑
i=1

 di∑
j=1

βij

(
j+n− 1
j− 1

)γni , ([)

where the expression inside the big parenthesis is a polynomial in n of
degree at most di − 1. Therefore f ∈ V3 and the proof is complete.

V4 = V1 The right-hand side of (]) equals∑k
i=1

(∏
h 6=i(1 − γhz)

dh
∑di
j=1 βij(1 − γiz)

di−j
)

∏k
i=1(1 − γiz)di

, ([[)

where the numerator is a polynomial of degree strictly smaller than∑
i di = d. Thus, V4 ⊆ V1. Since both spaces have dimension d, equality

follows.

V1 = V2 If f ∈ V1, then
q(z)

∑
n∈N

f(n)zn = p(z).

Now equating the coefficient of zd on both sides of the last equality
gives the relation in (ii).

Call a function f : N→ C polynomial if there is a polynomial p ∈ C[z] with
f(n) = p(n) for all n ∈N.

Corollary 6.2.2. Let f : N→ C and d ∈N. Then f is polynomial of degree at most
d if and only if ∑

n∈N

f(n)zn =
p(z)

(1 − z)d+1 (\)

for some p(x) ∈ C[x] of degree at most d.
Moreover, f is polynomial of degree exactly d if and only if p(1) 6= 0.

Proof. Equation (\) is an instance of Theorem 6.2.1.(i), with k = 1 and γ1 = 1.
From the equivalence of (i) and (iii) in Theorem 6.2.1 we have then that (\) is
equivalent to

f(n) = p1(n)

for a polynomial p1 ∈ C[x] of degree at most d.
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For the second claim notice that following ([) in the proof of Theorem 6.2.1
our f satisfies

f(n) =

d+1∑
j=1

β1j

(
j+n− 1
j− 1

)
for some numbers β1j, so f is polynomial of degree d if and only if β1(d+1) 6=
0. Now, the numbers βij are related to p(z) via the expression in ([[). In our
case, this means

p(z) =

d+1∑
j=1

βij(1 − z)d+1−j

and from here p(1) 6= 1 if and only if β1(d+1) 6= 0. The claim follows.
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Exercises VI

VI.1 Give a nonrecursive form for the general term of the following recur-
sively defined integer sequences.

• a0 = 2, a1 = 3, an = 3an−1 − 2an−2 for n > 2

• a0 = 0, a1 = 2, an = 4an−1 − 4an−2 for n > 2

• a0 = 5, a1 = 12, an = 4an−1 − 3an−2 − 2n−2 for n > 2

81



Chapter 7

Ehrhart theory

NOTE: This chapter follows very closely chapter 3 of
Beck-Robins “Computing the continuum discretely". I
omit proofs and examples that can be found in that
chapter.

Our goal in this chapter is to determine the lattice-point enumerator function
of a given convex polytope P in Rd, defined for every integer t as

LP(t) := #(tP ∩Zd) = #(P ∩ 1
t

Zd),

i.e., as the number of integer points contained in the t-th dilate of P.
This chapter is devoted to proving

Theorem 7.0.1. For every integral d-dimensional polytope P, LP(t) is polynomial of
degree d.

The preceding chapter should suggest to us to consider the Ehrhart series
in one variable z:

EhrP(z) :=
∑
t>0

LP(t)z
t

7.1 Formal Laurent series from integer points

Definition 7.1.1. Let P be any polyhedron in Rd. Define

σP(z1, . . . , zd) :=
∑

m∈P∩Zd

zm.

We call this the integer-point transform of P.

Example 7.1.2. See Examples 3.3 and 3.4 in the book by Beck and Robins [1]
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Recall that a simplicial cone is a polyhedral cone C generated by dim(C)

vectors.

Theorem 7.1.3. Let m1, . . . ,md ∈ Zd be such that

C := cone{m1, . . . ,md}

is a simplicial d-dimensional cone. Let

Π :=

{
d∑
i=1

λimi | 0 6 λi < 1

}

be the “fundamental parallelepiped” of C. Then, for every v ∈ Rn we have

σv+C(z1, . . . , zd) =
σv+Π(z1, . . . , zd)

(1 − zm1) · · · (1 − zmd)

Proof. The proof follows the template of the previous example - see [1].

7.2 Coning over polytopes

Definition 7.2.1. Let P ⊆ Rd be a convex polytope with vertices x1, . . . , xk.
We call standard cone over P the polyhedron

C(P) := cone{(x1, 1), . . . (xk, 1)} ⊆ Rd+1.

Now consider the ("vertical") vector ed+1 := (0, . . . , 0, 1) ∈ Rd+1. Given an
integer t we let

H(t) := {y ∈ Rd+1 | 〈ed+1,y〉 = t}
denote the "horizontal" plane at "height" t and define

P(t) := C(P)∩H(t).

Remark 7.2.2. Notice that, under the canonical identification of H(t) with Rd,
we have P(1) = P and, in general, P(t) = tP, the t-th dilate of P. Thus, for the
integer point counting function we have

LP(t) = LP(t)(1)

and, since every integer point of C(P) is obviously an integer point of exactly
one P(t),

σC(P)(1, . . . , 1, z) = 1 +
∑
t>1

LP(t)(1)zt =
∑
t>0

LP(t)z
t = EhrP(z)
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Proof of Theorem 7.0.1

By Corollary 6.2.2 it is enough to prove that the power series satisfies

EhrP(z) =
p(z)

(1 − z)d+1

for a polynomial p of degree at most d and p(1) 6= 0.
Moreover, by Theorem 5.5.8 it is enough to prove this for P an integral

simplex (since any integral P can be triangulated with no new vertices, and in
particular the triangulation consists of integral simplices).

Then, let P be an integral simplex – say with vertices x1, . . . , xd+1 ∈ Rd.
Then C(P) is a simplicial d-cone generated by

m1 := (x1, 1), . . . ,md+1 = (xd+1, 1) ∈ Zd+1

and now from Remark 7.2.2 and Theorem 7.1.3 that

EhrP(z) = σC(P)(1, . . . 1, zd+1) =
σΠ(1, . . . , 1, zd+1)

(1 − z)d+1

where Π = {λ1m1 + . . .+ λd+1md+1 | 0 6 λi < 1} is the half-open fundamental
parallepiped.

Now σΠ(1, . . . 1, zd+1) is a polynomial in zd+1 (since Π is bounded), and
its value at zd+1 = 1 is not zero (in fact, σΠ(1, . . . 1) is the total number of
integer points in Π, and Π contains at least the origin). We only have to
show that the degree of σΠ(1, . . . 1, zd+1) is at most d. For this, notice that the
maximum zd+1-degree in σΠ(z1, . . . , zd+1) is the maximum value of the last
coordinate over all integer points in Π. Now the last coordinate of a generic
point λ1m1 + . . . + λd+1md+1 in the parallelepiped is λ1 + . . . + λd+1. Thus,
every point in Π has last coordinate strictly less than d + 1, and so every
integer point in Π has last coordinate at most d.
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Exercises VII

VII.1 For each of the following simplices compute the Ehrhart series and the
Ehrhart polynomial.

• conv{(0, 0), (1, 0), (0, 1)}

• conv{(0, 0, 0), (1, 0, 0), (0, 2, 0), (0, 0, 3)}

• conv{(0, 0, 0, 0), (1, 0, 0, 0), (0, 2, 0, 0), (0, 0, 3, 0), (0, 0, 0, 4)}

VII.2 Compute the Ehrhart polynomial of the unit square [0, 1]2 in R2 using
the theory developed in this chapter, and compare the result with the
"common sense" computation.

VII.3 Let G be the graph depicted below, oriented so that "every edge is ori-
ented clockwise"

Compute the number of positive k-flows on G using Ehrhart theory,
following the steps below:

• Consider the incidence matrix A of G and compute the vertices of
the polytope P = {Ax = 0, 0 6 x 6 1} (this is the polytope U of the
beginning of chapter V).
(Hint: this polytope lives in the 2-dimensional space W = ker(A) ⊆
R4, hence the candidates for being vertices are the intersections of
the lines W ∩ {xi = 0}, W ∩ {xi = 1}, i = 1, . . . , 4.)

• Compute the integer point enumerator LQ(t) for Q ranging over all
faces of P.

• Give a polynomial expression for the function IG(k), counting the
number of integer points in U.

Bonus question: how many flippings of G support positive k-flows? Can
you compute the "full" integer flow polynomial of G?
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